Spaces:
Paused
Paused
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
# Load model and tokenizer | |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit" | |
adapter_name = "adarsh3601/my_gemma3_pt" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
load_in_4bit=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model.to(device) | |
# Chat function with debug/error handling | |
def chat(message): | |
if not message or not message.strip(): | |
return "Please enter a message." | |
try: | |
# Tokenize | |
inputs = tokenizer(message, return_tensors="pt") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Cast to float16 only if model is on CUDA | |
if device == "cuda": | |
inputs = {k: v.half() for k, v in inputs.items()} | |
# Generate | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.95 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except RuntimeError as e: | |
if "CUDA error" in str(e): | |
return "⚠️ CUDA error during generation. Try restarting or changing your input." | |
return f"Unexpected error: {e}" | |
except Exception as e: | |
return f"Error: {e}" | |
# Gradio UI | |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot") | |
iface.launch() | |