Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| import torch | |
| from transformers import AutoProcessor, AutoModelForImageTextToText | |
| from peft import PeftModel | |
| import gradio as gr | |
| # Set up device (CPU or GPU) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load processor and model | |
| model_name = "adarsh3601/my_gemma3_pt" # Change to your model path | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| model = AutoModelForImageTextToText.from_pretrained(model_name).to(device) | |
| # Optional: If using PEFT model with adapter | |
| # adapter_model_id = "your_adapter_model_id" # Uncomment and replace if using adapter | |
| # model = PeftModel.from_pretrained(model, adapter_model_id) | |
| # Define function to process the user input | |
| def chat(prompt): | |
| # Prepare the message in the format the model expects | |
| messages = [{"role": "user", "content": prompt}] | |
| # Process the input using the processor | |
| inputs = processor(messages, return_tensors="pt").to(device) | |
| # Generate the output from the model | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, max_length=200) | |
| # Decode and return the response | |
| return processor.decode(outputs[0], skip_special_tokens=True) | |
| # Gradio interface | |
| gr.Interface( | |
| fn=chat, | |
| inputs="text", | |
| outputs="text", | |
| title="Gemma Chat Model", | |
| description="Chat with Gemma3 model", | |
| live=True | |
| ).launch(share=False) # share=False for Hugging Face Spaces | |