Spaces:
Paused
Paused
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
import os | |
# Model loading | |
base_model_name = "adarsh3601/my_gemma_pt3" | |
adapter_name = "adarsh3601/my_gemma3_pt" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
auth_token = os.getenv("HF_AUTH_TOKEN") # Make sure to set the Hugging Face token as an environment variable | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=auth_token) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
load_in_4bit=True, | |
use_auth_token=auth_token | |
) | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model.to(device) | |
# Chat function | |
def chat(message): | |
inputs = tokenizer(message, return_tensors="pt") | |
inputs = {k: v.to(device).half() for k, v in inputs.items()} | |
outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Launch Gradio app | |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot") | |
iface.launch() | |