TestingModelAPI / app.py
made1570's picture
Update app.py
e622ac4 verified
raw
history blame
1.76 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
# Model and device setup
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
adapter_name = "adarsh3601/my_gemma3_pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load base model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map={"": device},
torch_dtype=torch.float16, # Keep float16 unless it breaks
load_in_4bit=True
)
# Load tokenizer and adapter
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, adapter_name)
model.to(device)
# Chat function with stability safeguards
def chat(message):
if not message or not message.strip():
return "Please enter a valid message."
inputs = tokenizer(message, return_tensors="pt")
# Safely move to device; only convert float tensors to half
for k in inputs:
if inputs[k].dtype == torch.float32:
inputs[k] = inputs[k].to(device).half()
else:
inputs[k] = inputs[k].to(device)
try:
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.8
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except RuntimeError as e:
return f"An error occurred during generation: {str(e)}"
# Launch Gradio app
iface = gr.Interface(
fn=chat,
inputs="text",
outputs="text",
title="Gemma Chatbot"
)
iface.launch()