Spaces:
Paused
Paused
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
# Model and device setup | |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit" | |
adapter_name = "adarsh3601/my_gemma3_pt" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load base model with 4-bit quantization | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
device_map={"": device}, | |
torch_dtype=torch.float16, # Keep float16 unless it breaks | |
load_in_4bit=True | |
) | |
# Load tokenizer and adapter | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model.to(device) | |
# Chat function with stability safeguards | |
def chat(message): | |
if not message or not message.strip(): | |
return "Please enter a valid message." | |
inputs = tokenizer(message, return_tensors="pt") | |
# Safely move to device; only convert float tensors to half | |
for k in inputs: | |
if inputs[k].dtype == torch.float32: | |
inputs[k] = inputs[k].to(device).half() | |
else: | |
inputs[k] = inputs[k].to(device) | |
try: | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.8 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except RuntimeError as e: | |
return f"An error occurred during generation: {str(e)}" | |
# Launch Gradio app | |
iface = gr.Interface( | |
fn=chat, | |
inputs="text", | |
outputs="text", | |
title="Gemma Chatbot" | |
) | |
iface.launch() | |