Spaces:
Sleeping
Sleeping
Sarkosos
commited on
Commit
·
f40a2d9
1
Parent(s):
5a605f5
Updated the dashboard to run via an api, reworked api to use fastapi
Browse files
api.py
CHANGED
@@ -2,25 +2,36 @@
|
|
2 |
import atexit
|
3 |
import datetime
|
4 |
|
5 |
-
from flask import Flask, request, jsonify
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
-
|
8 |
import utils
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
app = Flask(__name__)
|
11 |
|
12 |
|
13 |
# Global variables (saves time on loading data)
|
14 |
state_vars = None
|
15 |
reload_timestamp = datetime.datetime.now().strftime('%D %T')
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def load_data():
|
19 |
"""
|
20 |
Reload the state variables
|
21 |
"""
|
22 |
-
global
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
reload_timestamp = datetime.datetime.now().strftime('%D %T')
|
26 |
|
@@ -36,110 +47,42 @@ def start_scheduler():
|
|
36 |
atexit.register(lambda: scheduler.shutdown())
|
37 |
|
38 |
|
39 |
-
@app.
|
40 |
def home():
|
41 |
return "Welcome to the Bittensor Protein Folding Leaderboard API!"
|
42 |
|
43 |
|
44 |
-
@app.
|
45 |
def updated():
|
46 |
return reload_timestamp
|
47 |
|
48 |
|
49 |
-
@app.
|
50 |
-
|
51 |
-
def data(period=None):
|
52 |
-
"""
|
53 |
-
Get the productivity metrics
|
54 |
-
"""
|
55 |
-
assert period in ('24h', None), f"Invalid period: {period}. Must be '24h' or None."
|
56 |
-
df = state_vars["dataframe_24h"] if period == '24h' else state_vars["dataframe"]
|
57 |
-
return jsonify(
|
58 |
-
df.astype(str).to_dict(orient='records')
|
59 |
-
)
|
60 |
-
|
61 |
-
@app.route('/productivity', methods=['GET'])
|
62 |
-
@app.route('/productivity/<period>', methods=['GET'])
|
63 |
-
def productivity_metrics(period=None):
|
64 |
"""
|
65 |
Get the productivity metrics
|
66 |
"""
|
67 |
|
68 |
-
|
69 |
-
df = state_vars["dataframe_24h"] if period == '24h' else state_vars["dataframe"]
|
70 |
-
return jsonify(
|
71 |
-
utils.get_productivity(df)
|
72 |
-
)
|
73 |
|
74 |
|
75 |
-
@app.
|
76 |
-
|
77 |
-
def throughput_metrics(period=None):
|
78 |
"""
|
79 |
Get the throughput metrics
|
80 |
"""
|
81 |
-
|
82 |
-
|
83 |
-
return jsonify(utils.get_data_transferred(df))
|
84 |
-
|
85 |
-
|
86 |
-
@app.route('/metagraph', methods=['GET'])
|
87 |
-
def metagraph():
|
88 |
-
"""
|
89 |
-
Get the metagraph data
|
90 |
-
Returns:
|
91 |
-
- metagraph_data: List of dicts (from pandas DataFrame)
|
92 |
-
"""
|
93 |
-
|
94 |
-
df_m = state_vars["metagraph"]
|
95 |
-
|
96 |
-
return jsonify(
|
97 |
-
df_m.to_dict(orient='records')
|
98 |
-
)
|
99 |
-
|
100 |
-
@app.route('/leaderboard', methods=['GET'])
|
101 |
-
@app.route('/leaderboard/<entity>', methods=['GET'])
|
102 |
-
@app.route('/leaderboard/<entity>/<ntop>', methods=['GET'])
|
103 |
-
def leaderboard(entity='identity',ntop=10):
|
104 |
-
"""
|
105 |
-
Get the leaderboard data
|
106 |
-
Returns:
|
107 |
-
- leaderboard_data: List of dicts (from pandas DataFrame)
|
108 |
-
"""
|
109 |
-
|
110 |
-
assert entity in utils.ENTITY_CHOICES, f"Invalid entity choice: {entity}"
|
111 |
-
|
112 |
-
df_miners = utils.get_leaderboard(
|
113 |
-
state_vars["metagraph"],
|
114 |
-
ntop=int(ntop),
|
115 |
-
entity_choice=entity
|
116 |
-
)
|
117 |
-
|
118 |
-
return jsonify(
|
119 |
-
df_miners.to_dict(orient='records')
|
120 |
-
)
|
121 |
-
|
122 |
-
@app.route('/validator', methods=['GET'])
|
123 |
-
def validator():
|
124 |
-
"""
|
125 |
-
Get the validator data
|
126 |
-
Returns:
|
127 |
-
- validator_data: List of dicts (from pandas DataFrame)
|
128 |
-
"""
|
129 |
-
df_m = state_vars["metagraph"]
|
130 |
-
df_validators = df_m.loc[df_m.validator_trust > 0]
|
131 |
|
132 |
-
return jsonify(
|
133 |
-
df_validators.to_dict(orient='records')
|
134 |
-
)
|
135 |
|
136 |
|
137 |
if __name__ == '__main__':
|
138 |
|
139 |
load_data()
|
|
|
140 |
start_scheduler()
|
141 |
|
142 |
-
|
143 |
|
144 |
|
145 |
# to test locally
|
|
|
2 |
import atexit
|
3 |
import datetime
|
4 |
|
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
+
from fastapi import FastAPI
|
7 |
import utils
|
8 |
+
import pandas as pd
|
9 |
+
import uvicorn
|
10 |
+
|
11 |
+
from classes import Productivity, Throughput
|
12 |
|
|
|
13 |
|
14 |
|
15 |
# Global variables (saves time on loading data)
|
16 |
state_vars = None
|
17 |
reload_timestamp = datetime.datetime.now().strftime('%D %T')
|
18 |
|
19 |
+
data_all = None
|
20 |
+
data_24h = None
|
21 |
+
|
22 |
+
app = FastAPI()
|
23 |
|
24 |
def load_data():
|
25 |
"""
|
26 |
Reload the state variables
|
27 |
"""
|
28 |
+
global data_all, data_24h, reload_timestamp
|
29 |
+
|
30 |
+
utils.fetch_new_runs()
|
31 |
+
|
32 |
+
data_all = utils.preload_data()
|
33 |
+
|
34 |
+
data_24h = (pd.Timestamp.now() - data_all['updated_at'].apply(lambda x: pd.Timestamp(x)) < pd.Timedelta('1 days'))
|
35 |
|
36 |
reload_timestamp = datetime.datetime.now().strftime('%D %T')
|
37 |
|
|
|
47 |
atexit.register(lambda: scheduler.shutdown())
|
48 |
|
49 |
|
50 |
+
@app.get("/")
|
51 |
def home():
|
52 |
return "Welcome to the Bittensor Protein Folding Leaderboard API!"
|
53 |
|
54 |
|
55 |
+
@app.get("/updated")
|
56 |
def updated():
|
57 |
return reload_timestamp
|
58 |
|
59 |
|
60 |
+
@app.get("/productivity", response_model=Productivity)
|
61 |
+
def productivity_metrics():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
"""
|
63 |
Get the productivity metrics
|
64 |
"""
|
65 |
|
66 |
+
return Productivity(all_time=utils.get_productivity(data_all), last_24h=utils.get_productivity(data_24h))
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
+
@app.get("/throughput", response_model=Throughput)
|
70 |
+
def throughput_metrics():
|
|
|
71 |
"""
|
72 |
Get the throughput metrics
|
73 |
"""
|
74 |
+
|
75 |
+
return Throughput(all_time=utils.get_data_transferred(data_all), last_24h=utils.get_data_transferred(data_24h))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
if __name__ == '__main__':
|
80 |
|
81 |
load_data()
|
82 |
+
|
83 |
start_scheduler()
|
84 |
|
85 |
+
uvicorn.run(app, host='0.0.0.0', port=5001)
|
86 |
|
87 |
|
88 |
# to test locally
|
app.py
CHANGED
@@ -2,6 +2,7 @@ import time
|
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
import plotly.express as px
|
|
|
5 |
|
6 |
import utils
|
7 |
|
@@ -14,21 +15,13 @@ Simulation duration distribution
|
|
14 |
"""
|
15 |
|
16 |
UPDATE_INTERVAL = 3600
|
|
|
17 |
|
18 |
|
19 |
st.title('Folding Subnet Dashboard')
|
20 |
st.markdown('<br>', unsafe_allow_html=True)
|
21 |
|
22 |
-
# reload data periodically
|
23 |
-
df = utils.build_data(time.time()//UPDATE_INTERVAL)
|
24 |
-
st.toast(f'Loaded {len(df)} runs')
|
25 |
|
26 |
-
# TODO: fix the factor for 24 hours ago
|
27 |
-
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
|
28 |
-
df_24h = df.loc[runs_alive_24h_ago]
|
29 |
-
# correction factor to account for the fact that the data straddles the 24h boundary
|
30 |
-
# correction factor is based on the fraction of the run which occurred in the last 24h
|
31 |
-
# factor = (df_24h.last_event_at - pd.Timestamp.now() + pd.Timedelta('1d')) / pd.Timedelta('1d')
|
32 |
|
33 |
|
34 |
#### ------ PRODUCTIVITY ------
|
@@ -37,34 +30,35 @@ df_24h = df.loc[runs_alive_24h_ago]
|
|
37 |
st.subheader('Productivity overview')
|
38 |
st.info('Productivity metrics show how many proteins have been folded, which is the primary goal of the subnet. Metrics are estimated using weights and biases data combined with heuristics.')
|
39 |
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
|
44 |
-
m1, m2
|
45 |
-
m1.metric('Unique proteins folded', f'{productivity
|
46 |
-
m2.metric('Total
|
47 |
-
m3.metric('Total simulation steps', f'{productivity.get("total_md_steps"):,.0f}', delta=f'{productivity_24h.get("total_md_steps"):,.0f} (24h)')
|
48 |
-
|
49 |
-
st.markdown('<br>', unsafe_allow_html=True)
|
50 |
-
|
51 |
-
time_binned_data = df.set_index('last_event_at').groupby(pd.Grouper(freq='12h'))
|
52 |
-
|
53 |
-
PROD_CHOICES = {
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
}
|
58 |
-
prod_choice_label = st.radio('Select productivity metric', list(PROD_CHOICES.keys()), index=0, horizontal=True)
|
59 |
-
prod_choice = PROD_CHOICES[prod_choice_label]
|
60 |
-
steps_running_total = time_binned_data[prod_choice].sum().cumsum()
|
61 |
-
st.plotly_chart(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
|
69 |
st.markdown('<br>', unsafe_allow_html=True)
|
70 |
|
@@ -75,26 +69,27 @@ st.subheader('Throughput overview')
|
|
75 |
st.info('Throughput metrics show the total amount of data sent and received by the validators. This is a measure of the network activity and the amount of data that is being processed by the subnet.')
|
76 |
|
77 |
MEM_UNIT = 'GB' #st.radio('Select memory unit', ['TB','GB', 'MB'], index=0, horizontal=True)
|
|
|
78 |
|
79 |
-
data_transferred =
|
80 |
-
data_transferred_24h =
|
81 |
|
82 |
m1, m2, m3 = st.columns(3)
|
83 |
-
m1.metric(f'Total
|
84 |
-
m2.metric(f'Total received data ({MEM_UNIT})', f'{data_transferred
|
85 |
-
m3.metric(f'Total transferred data ({MEM_UNIT})', f'{data_transferred
|
86 |
|
87 |
|
88 |
-
IO_CHOICES = {'total_data_sent':'Sent', 'total_data_received':'Received'}
|
89 |
-
io_running_total = time_binned_data[list(IO_CHOICES.keys())].sum().rename(columns=IO_CHOICES).cumsum().melt(ignore_index=False)
|
90 |
-
io_running_total['value'] = io_running_total['value'].apply(utils.convert_unit, args=(utils.BASE_UNITS, MEM_UNIT))
|
91 |
|
92 |
-
st.plotly_chart(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
|
99 |
st.markdown('<br>', unsafe_allow_html=True)
|
100 |
|
@@ -127,14 +122,14 @@ st.markdown('<br>', unsafe_allow_html=True)
|
|
127 |
|
128 |
#### ------ LOGGED RUNS ------
|
129 |
|
130 |
-
st.subheader('Logged runs')
|
131 |
-
st.info('The timeline shows the creation and last event time of each run.')
|
132 |
-
st.plotly_chart(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
)
|
138 |
-
|
139 |
-
with st.expander('Show raw run data'):
|
140 |
-
|
|
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
import plotly.express as px
|
5 |
+
import requests
|
6 |
|
7 |
import utils
|
8 |
|
|
|
15 |
"""
|
16 |
|
17 |
UPDATE_INTERVAL = 3600
|
18 |
+
BASE_URL = 'API_URL'
|
19 |
|
20 |
|
21 |
st.title('Folding Subnet Dashboard')
|
22 |
st.markdown('<br>', unsafe_allow_html=True)
|
23 |
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
#### ------ PRODUCTIVITY ------
|
|
|
30 |
st.subheader('Productivity overview')
|
31 |
st.info('Productivity metrics show how many proteins have been folded, which is the primary goal of the subnet. Metrics are estimated using weights and biases data combined with heuristics.')
|
32 |
|
33 |
+
productivity_all = requests.get(f'{BASE_URL}/productivity').json()
|
34 |
+
productivity = productivity_all['all_time']
|
35 |
+
productivity_24h = productivity_all['last_24h']
|
36 |
|
37 |
|
38 |
+
m1, m2 = st.columns(2)
|
39 |
+
m1.metric('Unique proteins folded', f'{productivity["unique_folded"]:,.0f}', delta=f'{productivity_24h["unique_folded"]:,.0f} (24h)')
|
40 |
+
m2.metric('Total jobs completed', f'{productivity["total_completed_jobs"]:,.0f}', delta=f'{productivity_24h["total_completed_jobs"]:,.0f} (24h)')
|
41 |
+
# m3.metric('Total simulation steps', f'{productivity.get("total_md_steps"):,.0f}', delta=f'{productivity_24h.get("total_md_steps"):,.0f} (24h)')
|
42 |
+
|
43 |
+
# st.markdown('<br>', unsafe_allow_html=True)
|
44 |
+
|
45 |
+
# time_binned_data = df.set_index('last_event_at').groupby(pd.Grouper(freq='12h'))
|
46 |
+
|
47 |
+
# PROD_CHOICES = {
|
48 |
+
# 'Unique proteins folded': 'unique_pdbs',
|
49 |
+
# 'Total simulations': 'total_pdbs',
|
50 |
+
# 'Total simulation steps': 'total_md_steps',
|
51 |
+
# }
|
52 |
+
# prod_choice_label = st.radio('Select productivity metric', list(PROD_CHOICES.keys()), index=0, horizontal=True)
|
53 |
+
# prod_choice = PROD_CHOICES[prod_choice_label]
|
54 |
+
# steps_running_total = time_binned_data[prod_choice].sum().cumsum()
|
55 |
+
# st.plotly_chart(
|
56 |
+
# # add fillgradient to make it easier to see the trend
|
57 |
+
# px.area(steps_running_total, y=prod_choice,
|
58 |
+
# labels={'last_event_at':'', prod_choice: prod_choice_label},
|
59 |
+
# ).update_traces(fill='tozeroy'),
|
60 |
+
# use_container_width=True,
|
61 |
+
# )
|
62 |
|
63 |
st.markdown('<br>', unsafe_allow_html=True)
|
64 |
|
|
|
69 |
st.info('Throughput metrics show the total amount of data sent and received by the validators. This is a measure of the network activity and the amount of data that is being processed by the subnet.')
|
70 |
|
71 |
MEM_UNIT = 'GB' #st.radio('Select memory unit', ['TB','GB', 'MB'], index=0, horizontal=True)
|
72 |
+
throughput = requests.get(f'{BASE_URL}/throughput').json()
|
73 |
|
74 |
+
data_transferred = throughput['all_time']
|
75 |
+
data_transferred_24h = throughput['last_24h']
|
76 |
|
77 |
m1, m2, m3 = st.columns(3)
|
78 |
+
m1.metric(f'Total validator data sent ({MEM_UNIT})', f'{data_transferred["validator_sent"]:,.0f}', delta=f'{data_transferred_24h["validator_sent"]:,.0f} (24h)')
|
79 |
+
m2.metric(f'Total received data ({MEM_UNIT})', f'{data_transferred["miner_sent"]:,.0f}', delta=f'{data_transferred_24h["miner_sent"]:,.0f} (24h)')
|
80 |
+
m3.metric(f'Total transferred data ({MEM_UNIT})', f'{data_transferred["validator_sent"]+data_transferred["miner_sent"]:,.0f}', delta=f'{data_transferred_24h["validator_sent"]+data_transferred_24h["miner_sent"]:,.0f} (24h)')
|
81 |
|
82 |
|
83 |
+
# IO_CHOICES = {'total_data_sent':'Sent', 'total_data_received':'Received'}
|
84 |
+
# io_running_total = time_binned_data[list(IO_CHOICES.keys())].sum().rename(columns=IO_CHOICES).cumsum().melt(ignore_index=False)
|
85 |
+
# io_running_total['value'] = io_running_total['value'].apply(utils.convert_unit, args=(utils.BASE_UNITS, MEM_UNIT))
|
86 |
|
87 |
+
# st.plotly_chart(
|
88 |
+
# px.area(io_running_total, y='value', color='variable',
|
89 |
+
# labels={'last_event_at':'', 'value': f'Data transferred ({MEM_UNIT})', 'variable':'Direction'},
|
90 |
+
# ),
|
91 |
+
# use_container_width=True,
|
92 |
+
# )
|
93 |
|
94 |
st.markdown('<br>', unsafe_allow_html=True)
|
95 |
|
|
|
122 |
|
123 |
#### ------ LOGGED RUNS ------
|
124 |
|
125 |
+
# st.subheader('Logged runs')
|
126 |
+
# st.info('The timeline shows the creation and last event time of each run.')
|
127 |
+
# st.plotly_chart(
|
128 |
+
# px.timeline(df, x_start='created_at', x_end='last_event_at', y='username', color='state',
|
129 |
+
# labels={'created_at':'Created at', 'last_event_at':'Last event at', 'username':''},
|
130 |
+
# ),
|
131 |
+
# use_container_width=True
|
132 |
+
# )
|
133 |
+
|
134 |
+
# with st.expander('Show raw run data'):
|
135 |
+
# st.dataframe(df)
|
classes.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
|
3 |
+
class ProductivityData(BaseModel):
|
4 |
+
unique_folded: int
|
5 |
+
total_completed_jobs: int
|
6 |
+
|
7 |
+
class Productivity(BaseModel):
|
8 |
+
all_time: ProductivityData
|
9 |
+
last_24h: ProductivityData
|
10 |
+
|
11 |
+
class ThroughputData(BaseModel):
|
12 |
+
validator_sent: float
|
13 |
+
miner_sent: float
|
14 |
+
|
15 |
+
class Throughput(BaseModel):
|
16 |
+
all_time: ThroughputData
|
17 |
+
last_24h: ThroughputData
|
utils.py
CHANGED
@@ -5,6 +5,7 @@ import wandb
|
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import bittensor as bt
|
|
|
8 |
|
9 |
|
10 |
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
|
@@ -15,7 +16,7 @@ import bittensor as bt
|
|
15 |
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
|
16 |
MAX_RUNS = 100#0000
|
17 |
NETUID = 25
|
18 |
-
|
19 |
NETWORK = 'finney'
|
20 |
KEYS = None
|
21 |
ABBREV_CHARS = 8
|
@@ -23,7 +24,12 @@ ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
|
|
23 |
|
24 |
PDBS_PER_RUN_STEP = 0.083
|
25 |
AVG_MD_STEPS = 30_000
|
26 |
-
BASE_UNITS = '
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
api = wandb.Api(timeout=120, api_key='cdcbe340bb7937d3a289d39632491d12b39231b7')
|
29 |
|
@@ -47,24 +53,24 @@ EXTRACTORS = {
|
|
47 |
'run_id': lambda x: x.id,
|
48 |
'user': lambda x: x.user.name[:16],
|
49 |
'username': lambda x: x.user.username[:16],
|
50 |
-
'created_at': lambda x: pd.Timestamp(x.created_at),
|
51 |
-
'last_event_at': lambda x: pd.
|
52 |
|
53 |
'netuid': lambda x: x.config.get('netuid'),
|
54 |
'mock': lambda x: x.config.get('neuron').get('mock'),
|
55 |
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
|
56 |
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
|
57 |
'timeout': lambda x: x.config.get('neuron').get('timeout'),
|
58 |
-
'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
|
59 |
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
|
60 |
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
|
61 |
|
62 |
# This stuff is from the last logged event
|
63 |
'num_steps': lambda x: x.summary.get('_step'),
|
64 |
-
'runtime': lambda x: x.summary.get('_runtime'),
|
65 |
-
'init_energy': lambda x: x.summary.get('init_energy'),
|
66 |
-
'best_energy': lambda x: x.summary.get('best_loss'),
|
67 |
-
'pdb_id': lambda x: x.summary.get('pdb_id'),
|
68 |
'pdb_updates': lambda x: x.summary.get('updated_count'),
|
69 |
'total_returned_sizes': lambda x: get_total_file_sizes(x),
|
70 |
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
|
@@ -74,10 +80,12 @@ EXTRACTORS = {
|
|
74 |
'version': lambda x: x.tags[0],
|
75 |
'spec_version': lambda x: x.tags[1],
|
76 |
'vali_hotkey': lambda x: x.tags[2],
|
77 |
-
|
78 |
# System metrics
|
79 |
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
|
80 |
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
|
|
|
|
|
81 |
# Really slow stuff below
|
82 |
# 'started_at': lambda x: x.metadata.get('startedAt'),
|
83 |
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
|
@@ -135,32 +143,30 @@ def get_total_md_input_sizes(run):
|
|
135 |
|
136 |
|
137 |
def get_data_transferred(df, unit='GB'):
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
return {
|
143 |
-
'
|
144 |
-
'
|
145 |
-
|
146 |
-
'read':df.disk_read.sum() * factor,
|
147 |
-
'write':df.disk_write.sum() * factor,
|
148 |
-
}
|
149 |
|
150 |
|
151 |
def get_productivity(df):
|
152 |
|
153 |
# Estimate the number of unique pdbs folded using our heuristic
|
154 |
-
unique_folded = df.
|
155 |
-
# Estimate the total number of
|
156 |
-
|
157 |
-
# Estimate the total number of simulation steps completed using our heuristic
|
158 |
-
total_md_steps = df.total_md_steps.sum().round()
|
159 |
|
|
|
|
|
|
|
|
|
160 |
return {
|
161 |
'unique_folded': unique_folded,
|
162 |
-
'
|
163 |
-
'total_md_steps': total_md_steps,
|
164 |
}
|
165 |
|
166 |
def get_leaderboard(df, ntop=10, entity_choice='identity'):
|
@@ -169,6 +175,83 @@ def get_leaderboard(df, ntop=10, entity_choice='identity'):
|
|
169 |
df.index = range(df.shape[0])
|
170 |
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
@st.cache_data()
|
173 |
def get_metagraph(time):
|
174 |
print(f'Loading metagraph with time {time}')
|
@@ -188,20 +271,26 @@ def get_metagraph(time):
|
|
188 |
return df_m
|
189 |
|
190 |
|
191 |
-
|
192 |
-
def load_run(run_path, keys=KEYS):
|
193 |
-
|
194 |
print('Loading run:', run_path)
|
195 |
run = api.run(run_path)
|
196 |
-
df = pd.DataFrame(list(run.scan_history(
|
|
|
197 |
for col in ['updated_at', 'best_loss_at', 'created_at']:
|
198 |
if col in df.columns:
|
199 |
df[col] = pd.to_datetime(df[col])
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
@st.cache_data(show_spinner=False)
|
204 |
-
def build_data(timestamp=None, paths=
|
205 |
|
206 |
save_path = '_saved_runs.csv'
|
207 |
filters = {}
|
@@ -272,10 +361,4 @@ def load_state_vars():
|
|
272 |
}
|
273 |
|
274 |
|
275 |
-
if __name__ == '__main__':
|
276 |
-
|
277 |
-
print('Loading runs')
|
278 |
-
df = load_runs()
|
279 |
|
280 |
-
df.to_csv('test_wandb_data.csv', index=False)
|
281 |
-
print(df)
|
|
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import bittensor as bt
|
8 |
+
import ast
|
9 |
|
10 |
|
11 |
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
|
|
|
16 |
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
|
17 |
MAX_RUNS = 100#0000
|
18 |
NETUID = 25
|
19 |
+
BASE_PATH = 'macrocosmos/folding-validators' # added historical data from otf wandb and current data
|
20 |
NETWORK = 'finney'
|
21 |
KEYS = None
|
22 |
ABBREV_CHARS = 8
|
|
|
24 |
|
25 |
PDBS_PER_RUN_STEP = 0.083
|
26 |
AVG_MD_STEPS = 30_000
|
27 |
+
BASE_UNITS = 'GB'
|
28 |
+
SAVE_PATH = 'current_runs/'
|
29 |
+
# Check if the directory exists
|
30 |
+
if not os.path.exists(SAVE_PATH):
|
31 |
+
# If it doesn't exist, create the directory
|
32 |
+
os.makedirs(SAVE_PATH)
|
33 |
|
34 |
api = wandb.Api(timeout=120, api_key='cdcbe340bb7937d3a289d39632491d12b39231b7')
|
35 |
|
|
|
53 |
'run_id': lambda x: x.id,
|
54 |
'user': lambda x: x.user.name[:16],
|
55 |
'username': lambda x: x.user.username[:16],
|
56 |
+
# 'created_at': lambda x: pd.Timestamp(x.created_at),
|
57 |
+
'last_event_at': lambda x: pd.to_datetime(x.summary.get('_timestamp'), errors='coerce'),
|
58 |
|
59 |
'netuid': lambda x: x.config.get('netuid'),
|
60 |
'mock': lambda x: x.config.get('neuron').get('mock'),
|
61 |
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
|
62 |
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
|
63 |
'timeout': lambda x: x.config.get('neuron').get('timeout'),
|
64 |
+
# 'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
|
65 |
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
|
66 |
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
|
67 |
|
68 |
# This stuff is from the last logged event
|
69 |
'num_steps': lambda x: x.summary.get('_step'),
|
70 |
+
# 'runtime': lambda x: x.summary.get('_runtime'),
|
71 |
+
# 'init_energy': lambda x: x.summary.get('init_energy'),
|
72 |
+
# 'best_energy': lambda x: x.summary.get('best_loss'),
|
73 |
+
# 'pdb_id': lambda x: x.summary.get('pdb_id'),
|
74 |
'pdb_updates': lambda x: x.summary.get('updated_count'),
|
75 |
'total_returned_sizes': lambda x: get_total_file_sizes(x),
|
76 |
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
|
|
|
80 |
'version': lambda x: x.tags[0],
|
81 |
'spec_version': lambda x: x.tags[1],
|
82 |
'vali_hotkey': lambda x: x.tags[2],
|
83 |
+
|
84 |
# System metrics
|
85 |
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
|
86 |
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
|
87 |
+
'network_sent': lambda x: x.system_metrics.get('system.network.sent'),
|
88 |
+
'network_recv': lambda x: x.system_metrics.get('system.network.recv'),
|
89 |
# Really slow stuff below
|
90 |
# 'started_at': lambda x: x.metadata.get('startedAt'),
|
91 |
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
|
|
|
143 |
|
144 |
|
145 |
def get_data_transferred(df, unit='GB'):
|
146 |
+
|
147 |
+
validator_sent = df.md_inputs_sizes.dropna().apply(lambda x: ast.literal_eval(x)).explode().sum()
|
148 |
+
miner_sent = df.response_returned_files_sizes.dropna().apply(lambda x: ast.literal_eval(x)).explode().explode().sum()
|
149 |
+
|
150 |
return {
|
151 |
+
'validator_sent': convert_unit(validator_sent, from_unit='B', to_unit=BASE_UNITS),
|
152 |
+
'miner_sent': convert_unit(miner_sent, from_unit='B', to_unit=BASE_UNITS),
|
153 |
+
}
|
|
|
|
|
|
|
154 |
|
155 |
|
156 |
def get_productivity(df):
|
157 |
|
158 |
# Estimate the number of unique pdbs folded using our heuristic
|
159 |
+
unique_folded = len(df.pdb_id.value_counts())
|
160 |
+
# Estimate the total number of jobs completed using our heuristic
|
161 |
+
completed_jobs = len(df[df.active == False])
|
|
|
|
|
162 |
|
163 |
+
total_historical_run_updates = df.active.isna().sum()
|
164 |
+
total_historical_completed_jobs = total_historical_run_updates//10 # this is an estimate based on minimum number of updates per pdb
|
165 |
+
|
166 |
+
|
167 |
return {
|
168 |
'unique_folded': unique_folded,
|
169 |
+
'total_completed_jobs': (completed_jobs + total_historical_completed_jobs).item(),
|
|
|
170 |
}
|
171 |
|
172 |
def get_leaderboard(df, ntop=10, entity_choice='identity'):
|
|
|
175 |
df.index = range(df.shape[0])
|
176 |
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
|
177 |
|
178 |
+
|
179 |
+
|
180 |
+
def fetch_new_runs(base_path: str = BASE_PATH , netuid: int = 25, min_steps: int = 10, save_path: str= SAVE_PATH, extractors: dict = EXTRACTORS):
|
181 |
+
runs_checker = pd.read_csv('runs_checker.csv')
|
182 |
+
current_time = pd.to_datetime(time.time(), unit='s')
|
183 |
+
current_time_str = current_time.strftime('%y-%m-%d') # Format as 'YYYYMMDD'
|
184 |
+
new_ticker = runs_checker.check_ticker.max() + 1
|
185 |
+
|
186 |
+
new_rows_list = []
|
187 |
+
|
188 |
+
# update runs list based on all current runs running
|
189 |
+
for run in api.runs(base_path):
|
190 |
+
num_steps = run.summary.get('_step')
|
191 |
+
|
192 |
+
if run.config.get('netuid') != netuid:
|
193 |
+
continue
|
194 |
+
|
195 |
+
if num_steps is None or num_steps < min_steps:
|
196 |
+
continue
|
197 |
+
|
198 |
+
if run.state =='running':
|
199 |
+
new_rows_list.append({
|
200 |
+
'run_id': run.id,
|
201 |
+
'state': run.state,
|
202 |
+
'step': num_steps,
|
203 |
+
'check_time': current_time,
|
204 |
+
'check_ticker': new_ticker,
|
205 |
+
'user': run.user.name[:16],
|
206 |
+
'username': run.user.username[:16]
|
207 |
+
})
|
208 |
+
if new_rows_list:
|
209 |
+
new_rows_df = pd.DataFrame(new_rows_list)
|
210 |
+
runs_checker= pd.concat([runs_checker, new_rows_df], ignore_index=True)
|
211 |
+
# save
|
212 |
+
runs_checker.to_csv('runs_checker.csv', index=False)
|
213 |
+
|
214 |
+
bt.logging.info(f'Cross checking runs for ticker {new_ticker} against previous ticker')
|
215 |
+
previous_check = runs_checker[runs_checker.check_ticker==new_ticker - 1]
|
216 |
+
current_check = runs_checker[runs_checker.check_ticker == new_ticker]
|
217 |
+
|
218 |
+
# save ended runs from last check
|
219 |
+
for run_id in previous_check.run_id:
|
220 |
+
if run_id not in current_check.run_id:
|
221 |
+
|
222 |
+
frame = load_run(f'{base_path}/{run_id}', extractors=EXTRACTORS)
|
223 |
+
|
224 |
+
csv_path = os.path.join(save_path, f"{run_id}.csv")
|
225 |
+
frame.to_csv(csv_path)
|
226 |
+
|
227 |
+
# save new runs
|
228 |
+
for run in api.runs(base_path):
|
229 |
+
if run.config.get('netuid') != netuid:
|
230 |
+
continue
|
231 |
+
num_steps = run.summary.get('_step')
|
232 |
+
if num_steps is None or num_steps < min_steps:
|
233 |
+
continue
|
234 |
+
if run.state =='running':
|
235 |
+
frame = load_run(run_path='/'.join(run.path), extractors=EXTRACTORS)
|
236 |
+
csv_path = os.path.join(save_path, f"{run.id}.csv")
|
237 |
+
frame.to_csv(csv_path)
|
238 |
+
|
239 |
+
|
240 |
+
def preload_data():
|
241 |
+
# save all the paths of files to a list in a directory
|
242 |
+
paths_list = []
|
243 |
+
for path in os.listdir(SAVE_PATH):
|
244 |
+
paths_list.append(os.path.join(SAVE_PATH, path))
|
245 |
+
|
246 |
+
df_list = []
|
247 |
+
|
248 |
+
for path in paths_list:
|
249 |
+
df = pd.read_csv(path,low_memory=False)
|
250 |
+
df_list.append(df)
|
251 |
+
|
252 |
+
combined_df = pd.concat(df_list, ignore_index=True)
|
253 |
+
return combined_df
|
254 |
+
|
255 |
@st.cache_data()
|
256 |
def get_metagraph(time):
|
257 |
print(f'Loading metagraph with time {time}')
|
|
|
271 |
return df_m
|
272 |
|
273 |
|
274 |
+
def load_run(run_path: str, extractors: dict):
|
|
|
|
|
275 |
print('Loading run:', run_path)
|
276 |
run = api.run(run_path)
|
277 |
+
df = pd.DataFrame(list(run.scan_history()))
|
278 |
+
|
279 |
for col in ['updated_at', 'best_loss_at', 'created_at']:
|
280 |
if col in df.columns:
|
281 |
df[col] = pd.to_datetime(df[col])
|
282 |
+
num_rows=len(df)
|
283 |
+
|
284 |
+
extractor_df = {key: func(run) for key, func in extractors.items()}
|
285 |
+
repeated_data = {key: [value] * num_rows for key, value in extractor_df.items()}
|
286 |
+
extractor_df = pd.DataFrame(repeated_data)
|
287 |
+
|
288 |
+
combined_df = pd.concat([df, extractor_df], axis=1)
|
289 |
+
|
290 |
+
return combined_df
|
291 |
|
292 |
@st.cache_data(show_spinner=False)
|
293 |
+
def build_data(timestamp=None, paths=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
|
294 |
|
295 |
save_path = '_saved_runs.csv'
|
296 |
filters = {}
|
|
|
361 |
}
|
362 |
|
363 |
|
|
|
|
|
|
|
|
|
364 |
|
|
|
|