Sn25 / utils.py
schampoux's picture
hotfix/24h (#3)
0872630 verified
raw
history blame
14.6 kB
import os
import tqdm
import time
import wandb
import streamlit as st
import pandas as pd
import bittensor as bt
import ast
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
# TODO: filter out netuid 141(?)
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
MAX_RUNS = 100#0000
NETUID = 25
BASE_PATH = 'macrocosmos/folding-validators' # added historical data from otf wandb and current data
NETWORK = 'finney'
KEYS = None
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
PDBS_PER_RUN_STEP = 0.083
AVG_MD_STEPS = 30_000
BASE_UNITS = 'GB'
SAVE_PATH = 'current_runs/'
# Check if the directory exists
if not os.path.exists(SAVE_PATH):
# If it doesn't exist, create the directory
os.makedirs(SAVE_PATH)
api = wandb.Api(timeout=120, api_key='cdcbe340bb7937d3a289d39632491d12b39231b7')
IDENTITIES = {
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}
EXTRACTORS = {
'state': lambda x: x.state,
'run_id': lambda x: x.id,
'user': lambda x: x.user.name[:16],
'username': lambda x: x.user.username[:16],
# 'created_at': lambda x: pd.Timestamp(x.created_at),
'last_event_at': lambda x: pd.to_datetime(x.summary.get('_timestamp'), errors='coerce'),
'netuid': lambda x: x.config.get('netuid'),
'mock': lambda x: x.config.get('neuron').get('mock'),
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
'timeout': lambda x: x.config.get('neuron').get('timeout'),
# 'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
'num_steps': lambda x: x.summary.get('_step'),
# 'runtime': lambda x: x.summary.get('_runtime'),
# 'init_energy': lambda x: x.summary.get('init_energy'),
# 'best_energy': lambda x: x.summary.get('best_loss'),
# 'pdb_id': lambda x: x.summary.get('pdb_id'),
'pdb_updates': lambda x: x.summary.get('updated_count'),
'total_returned_sizes': lambda x: get_total_file_sizes(x),
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
'pdb_atoms': lambda x: get_pdb_complexity(x),
'version': lambda x: x.tags[0],
'spec_version': lambda x: x.tags[1],
'vali_hotkey': lambda x: x.tags[2],
# System metrics
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
'network_sent': lambda x: x.system_metrics.get('system.network.sent'),
'network_recv': lambda x: x.system_metrics.get('system.network.recv'),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_pdb_complexity(run, field='ATOM', preprocess=True):
data = run.summary.get('pdb_complexity')
if not isinstance(data, list) or len(data)==0:
return None
data = data[0]
counts = data.get(field)
if counts is not None:
return counts
counts = 0
for key in data.keys():
if key.startswith(field):
counts+=data.get(key)
return counts
def convert_unit(value, from_unit, to_unit):
"""Converts a value from one unit to another
example:
convert_unit(1024, 'KB', 'MB') -> 1
convert_unit(1024, 'MB', 'KB') -> 1048576
"""
units = ['B', 'KB','MB','GB','TB']
assert from_unit.upper() in units, f'From unit {from_unit!r} not in {units}'
assert to_unit.upper() in units, f'To unit {to_unit!r} not in {units}'
factor = 1024**(units.index(from_unit) - units.index(to_unit))
# print(f'Converting from {from_unit!r} to {to_unit!r}, factor: {factor}')
return value * factor
def get_total_file_sizes(run):
"""returns total size of byte strings in bytes"""
# for sizes in run.summary.get('response_returned_files_sizes',[[]]):
# if sizes and sized is not None:
# for size in sizes:
file_sizes = run.summary.get('response_returned_files_sizes',[[]])
if file_sizes is None:
return 0
size_bytes = sum(size for sizes in file_sizes for size in sizes if sizes and sizes is not None)
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_total_md_input_sizes(run):
"""returns total size of byte strings in bytes"""
size_bytes = sum(run.summary.get('md_inputs_sizes',[]))
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_data_transferred(df, unit='GB'):
validator_sent = df.md_inputs_sizes.dropna().apply(lambda x: ast.literal_eval(x)).explode().sum()
miner_sent = df.response_returned_files_sizes.dropna().apply(lambda x: ast.literal_eval(x)).explode().explode().sum()
return {
'validator_sent': convert_unit(validator_sent, from_unit='B', to_unit=BASE_UNITS),
'miner_sent': convert_unit(miner_sent, from_unit='B', to_unit=BASE_UNITS),
}
def get_productivity(df_all, df_24h):
result = {
'all_time': {
'unique_folded': 0,
'total_completed_jobs': 0
},
'last_24h': {
'unique_folded': 0,
'total_completed_jobs': 0
}
}
if df_all is not None:
unique_folded_all = len(df_all.pdb_id.value_counts())
completed_jobs_all = len(df_all[df_all.active == False])
total_historical_run_updates = df_all.active.isna().sum()
total_historical_completed_jobs = total_historical_run_updates//10 # this is an estimate based on minimum number of updates per pdb
result['all_time'].update({
'unique_folded': unique_folded_all,
'total_completed_jobs': (completed_jobs_all + total_historical_completed_jobs).item(),
})
if df_24h is not None:
completed_jobs_24h = df_24h[df_24h['updated_count'] >= 10]
unique_completed_jobs_24h = completed_jobs_24h.drop_duplicates(subset=['pdb_id'], keep='first')
result['last_24h'].update({
'unique_folded': len(unique_completed_jobs_24h),
'total_completed_jobs': len(completed_jobs_24h)
})
return result
def get_leaderboard(df, ntop=10, entity_choice='identity'):
df = df.loc[df.validator_permit==False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
def fetch_new_runs(base_path: str = BASE_PATH , netuid: int = 25, min_steps: int = 10, save_path: str= SAVE_PATH, extractors: dict = EXTRACTORS):
runs_checker = pd.read_csv('runs_checker.csv')
current_time = pd.to_datetime(time.time(), unit='s')
current_time_str = current_time.strftime('%y-%m-%d') # Format as 'YYYYMMDD'
new_ticker = runs_checker.check_ticker.max() + 1
new_rows_list = []
# update runs list based on all current runs running
for run in api.runs(base_path):
num_steps = run.summary.get('_step')
if run.config.get('netuid') != netuid:
continue
if num_steps is None or num_steps < min_steps:
continue
if run.state =='running':
new_rows_list.append({
'run_id': run.id,
'state': run.state,
'step': num_steps,
'check_time': current_time,
'check_ticker': new_ticker,
'user': run.user.name[:16],
'username': run.user.username[:16]
})
if new_rows_list:
new_rows_df = pd.DataFrame(new_rows_list)
runs_checker= pd.concat([runs_checker, new_rows_df], ignore_index=True)
# save
runs_checker.to_csv('runs_checker.csv', index=False)
bt.logging.info(f'Cross checking runs for ticker {new_ticker} against previous ticker')
previous_check = runs_checker[runs_checker.check_ticker==new_ticker - 1]
current_check = runs_checker[runs_checker.check_ticker == new_ticker]
# save ended runs from last check
for run_id in previous_check.run_id:
if run_id not in current_check.run_id:
frame = load_run(f'{base_path}/{run_id}', extractors=EXTRACTORS)
csv_path = os.path.join(save_path, f"{run_id}.csv")
frame.to_csv(csv_path)
# save new runs
for run in api.runs(base_path):
if run.config.get('netuid') != netuid:
continue
num_steps = run.summary.get('_step')
if num_steps is None or num_steps < min_steps:
continue
if run.state =='running':
frame = load_run(run_path='/'.join(run.path), extractors=EXTRACTORS)
csv_path = os.path.join(save_path, f"{run.id}.csv")
frame.to_csv(csv_path)
def preload_data():
# save all the paths of files to a list in a directory
paths_list = []
for path in os.listdir(SAVE_PATH):
paths_list.append(os.path.join(SAVE_PATH, path))
df_list = []
for path in paths_list:
df = pd.read_csv(path,low_memory=False)
df_list.append(df)
combined_df = pd.concat(df_list, ignore_index=True)
return combined_df
@st.cache_data()
def get_metagraph(time):
print(f'Loading metagraph with time {time}')
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m['uid'] = range(m.n.item())
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
df_m['port'] = list(map(lambda a: a.port, m.axons))
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
return df_m
def load_run(run_path: str, extractors: dict):
print('Loading run:', run_path)
run = api.run(run_path)
df = pd.DataFrame(list(run.scan_history()))
for col in ['updated_at', 'best_loss_at', 'created_at']:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
num_rows=len(df)
extractor_df = {key: func(run) for key, func in extractors.items()}
repeated_data = {key: [value] * num_rows for key, value in extractor_df.items()}
extractor_df = pd.DataFrame(repeated_data)
combined_df = pd.concat([df, extractor_df], axis=1)
return combined_df
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, paths=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = '_saved_runs.csv'
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df['created_at'] = pd.to_datetime(df['created_at'])
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
timestamp_str = df['last_event_at'].max().isoformat()
filters.update({'updated_at': {'$gte': timestamp_str}})
progress = st.progress(0, text='Loading data')
historical_runs = api.runs(paths[0], filters=filters)
historical_and_current_runs = [historical_runs, api.runs(paths[1], filters=filters)]
run_data = []
n_events = 0
total_runs = len(historical_and_current_runs[0])+len(historical_and_current_runs[1])
for runs in historical_and_current_runs:
for i, run in enumerate(tqdm.tqdm(runs, total=total_runs)):
num_steps = run.summary.get('_step',0)
if num_steps<min_steps:
continue
n_events += num_steps
prog_msg = f'Loading data {i/total_runs*100:.0f}%, {n_events:,.0f} events)'
progress.progress(i/total_runs,text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
run_data.append(run)
progress.empty()
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
df = pd.concat([df, df_new], ignore_index=True)
df['duration'] = (df.last_event_at - df.created_at).round('s')
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
# Estimate the number of unique pdbs in a run as a function of the steps in the run
df['unique_pdbs'] = df['num_steps'] * PDBS_PER_RUN_STEP
df['total_pdbs'] = df['unique_pdbs'] * df['sample_size']
# Estimate the number of md steps as the average per simulation multiplied by our estimate of total sims
df['total_md_steps'] = df['total_pdbs'] * AVG_MD_STEPS
df['total_data_sent'] = df['total_sent_sizes'] * df['num_steps']
df['total_data_received'] = df['total_returned_sizes'] * df['num_steps']
df.to_csv(save_path, index=False)
return df
def load_state_vars():
UPDATE_INTERVAL = 600
df = build_data(time.time()//UPDATE_INTERVAL)
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
df_24h = df.loc[runs_alive_24h_ago]
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
return {
'dataframe': df,
'dataframe_24h': df_24h,
'metagraph': df_m,
}