Sn25 / utils.py
Sarkosos
initial dashboard push
aad220f
raw
history blame
No virus
10 kB
import os
import tqdm
import time
import wandb
import streamlit as st
import pandas as pd
import bittensor as bt
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
# TODO: filter out netuid 141(?)
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
MAX_RUNS = 100#0000
NETUID = 25
BASE_PATH = 'opentensor-dev/folding-validators'
NETWORK = 'finney'
KEYS = None
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
PDBS_PER_RUN_STEP = 0.083
AVG_MD_STEPS = 30_000
BASE_UNITS = 'MB'
api = wandb.Api(timeout=120)
IDENTITIES = {
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}
EXTRACTORS = {
'state': lambda x: x.state,
'run_id': lambda x: x.id,
'user': lambda x: x.user.name[:16],
'username': lambda x: x.user.username[:16],
'created_at': lambda x: pd.Timestamp(x.created_at),
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
'netuid': lambda x: x.config.get('netuid'),
'mock': lambda x: x.config.get('neuron').get('mock'),
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
'timeout': lambda x: x.config.get('neuron').get('timeout'),
'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
'num_steps': lambda x: x.summary.get('_step'),
'runtime': lambda x: x.summary.get('_runtime'),
'init_energy': lambda x: x.summary.get('init_energy'),
'best_energy': lambda x: x.summary.get('best_loss'),
'pdb_id': lambda x: x.summary.get('pdb_id'),
'pdb_updates': lambda x: x.summary.get('updated_count'),
'total_returned_sizes': lambda x: get_total_file_sizes(x),
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
'pdb_atoms': lambda x: get_pdb_complexity(x),
'version': lambda x: x.tags[0],
'spec_version': lambda x: x.tags[1],
'vali_hotkey': lambda x: x.tags[2],
# System metrics
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_pdb_complexity(run, field='ATOM', preprocess=True):
data = run.summary.get('pdb_complexity')
if not isinstance(data, list) or len(data)==0:
return None
data = data[0]
counts = data.get(field)
if counts is not None:
return counts
counts = 0
for key in data.keys():
if key.startswith(field):
counts+=data.get(key)
return counts
def convert_unit(value, from_unit, to_unit):
"""Converts a value from one unit to another
example:
convert_unit(1024, 'KB', 'MB') -> 1
convert_unit(1024, 'MB', 'KB') -> 1048576
"""
units = ['B', 'KB','MB','GB','TB']
assert from_unit.upper() in units, f'From unit {from_unit!r} not in {units}'
assert to_unit.upper() in units, f'To unit {to_unit!r} not in {units}'
factor = 1024**(units.index(from_unit) - units.index(to_unit))
# print(f'Converting from {from_unit!r} to {to_unit!r}, factor: {factor}')
return value * factor
def get_total_file_sizes(run):
"""returns total size of byte strings in bytes"""
size_bytes = sum(size for sizes in run.summary.get('response_returned_files_sizes',[[]]) for size in sizes if sizes)
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_total_md_input_sizes(run):
"""returns total size of byte strings in bytes"""
size_bytes = sum(run.summary.get('md_inputs_sizes',[]))
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_data_transferred(df, unit='GB'):
factor = convert_unit(1, from_unit=BASE_UNITS, to_unit=unit)
sent = df.total_data_sent.sum()
received = df.total_data_received.sum()
return {
'sent':sent * factor,
'received':received * factor,
'total': (sent + received) * factor,
'read':df.disk_read.sum() * factor,
'write':df.disk_write.sum() * factor,
}
def get_productivity(df):
# Estimate the number of unique pdbs folded using our heuristic
unique_folded = df.unique_pdbs.sum().round()
# Estimate the total number of simulations completed using our heuristic
total_simulations = df.total_pdbs.sum().round()
# Estimate the total number of simulation steps completed using our heuristic
total_md_steps = df.total_md_steps.sum().round()
return {
'unique_folded': unique_folded,
'total_simulations': total_simulations,
'total_md_steps': total_md_steps,
}
def get_leaderboard(df, ntop=10, entity_choice='identity'):
df = df.loc[df.validator_permit==False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
@st.cache_data()
def get_metagraph(time):
print(f'Loading metagraph with time {time}')
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m['uid'] = range(m.n.item())
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
df_m['port'] = list(map(lambda a: a.port, m.axons))
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
return df_m
@st.cache_data()
def load_run(run_path, keys=KEYS):
print('Loading run:', run_path)
run = api.run(run_path)
df = pd.DataFrame(list(run.scan_history(keys=keys)))
for col in ['updated_at', 'best_loss_at', 'created_at']:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
print(f'+ Loaded {len(df)} records')
return df
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = '_saved_runs.csv'
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df['created_at'] = pd.to_datetime(df['created_at'])
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
timestamp_str = df['last_event_at'].max().isoformat()
filters.update({'updated_at': {'$gte': timestamp_str}})
progress = st.progress(0, text='Loading data')
runs = api.runs(path, filters=filters)
run_data = []
n_events = 0
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
num_steps = run.summary.get('_step',0)
if num_steps<min_steps:
continue
n_events += num_steps
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, {n_events:,.0f} events)'
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
run_data.append(run)
progress.empty()
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
df = pd.concat([df, df_new], ignore_index=True)
df['duration'] = (df.last_event_at - df.created_at).round('s')
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
# Estimate the number of unique pdbs in a run as a function of the steps in the run
df['unique_pdbs'] = df['num_steps'] * PDBS_PER_RUN_STEP
df['total_pdbs'] = df['unique_pdbs'] * df['sample_size']
# Estimate the number of md steps as the average per simulation multiplied by our estimate of total sims
df['total_md_steps'] = df['total_pdbs'] * AVG_MD_STEPS
df['total_data_sent'] = df['total_sent_sizes'] * df['num_steps']
df['total_data_received'] = df['total_returned_sizes'] * df['num_steps']
df.to_csv(save_path, index=False)
return df
def load_state_vars():
UPDATE_INTERVAL = 600
df = build_data(time.time()//UPDATE_INTERVAL)
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
df_24h = df.loc[runs_alive_24h_ago]
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
return {
'dataframe': df,
'dataframe_24h': df_24h,
'metagraph': df_m,
}
if __name__ == '__main__':
print('Loading runs')
df = load_runs()
df.to_csv('test_wandb_data.csv', index=False)
print(df)