maccmaccmaccc commited on
Commit
18971d1
·
verified ·
1 Parent(s): 300e5ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -3,6 +3,7 @@ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
  from llama_index.legacy.callbacks import CallbackManager
5
  from llama_index.llms.openai_like import OpenAILike
 
6
 
7
  # Create an instance of CallbackManager
8
  callback_manager = CallbackManager()
@@ -11,25 +12,29 @@ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
11
  model = "internlm2.5-latest"
12
  api_key = os.getenv('API_KEY')
13
 
14
- llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
 
 
 
 
 
 
15
 
16
-
17
-
18
- st.set_page_config(page_title="llama_index_demo", page_icon="������������")
19
  st.title("llama_index_demo")
20
 
21
- # 初始化模型
22
  @st.cache_resource
23
  def init_models():
 
24
  embed_model = HuggingFaceEmbedding(
25
- model_name="/root/model/sentence-transformer"
26
  )
27
  Settings.embed_model = embed_model
28
-
29
- #用初始化llm
30
  Settings.llm = llm
31
 
32
- documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
 
33
  index = VectorStoreIndex.from_documents(documents)
34
  query_engine = index.as_query_engine()
35
 
 
3
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
  from llama_index.legacy.callbacks import CallbackManager
5
  from llama_index.llms.openai_like import OpenAILike
6
+ import os
7
 
8
  # Create an instance of CallbackManager
9
  callback_manager = CallbackManager()
 
12
  model = "internlm2.5-latest"
13
  api_key = os.getenv('API_KEY')
14
 
15
+ llm = OpenAILike(
16
+ model=model,
17
+ api_base=api_base_url,
18
+ api_key=api_key,
19
+ is_chat_model=True,
20
+ callback_manager=callback_manager
21
+ )
22
 
23
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦙")
 
 
24
  st.title("llama_index_demo")
25
 
26
+ # 修改初始化模型函数
27
  @st.cache_resource
28
  def init_models():
29
+ # 使用 Hugging Face Hub 上的模型
30
  embed_model = HuggingFaceEmbedding(
31
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
32
  )
33
  Settings.embed_model = embed_model
 
 
34
  Settings.llm = llm
35
 
36
+ # 使用相对路径加载数据
37
+ documents = SimpleDirectoryReader("data").load_data()
38
  index = VectorStoreIndex.from_documents(documents)
39
  query_engine = index.as_query_engine()
40