sinr / eval.py
Oisin Mac Aodha
First model version
505e401
import numpy as np
import pandas as pd
import random
import torch
import time
import os
import copy
import json
import tifffile
import h3
import setup
from sklearn.linear_model import RidgeCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import average_precision_score
import utils
import models
import datasets
class EvaluatorSNT:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
D = np.load(os.path.join(paths['snt'], 'snt_res_5.npy'), allow_pickle=True)
D = D.item()
self.loc_indices_per_species = D['loc_indices_per_species']
self.labels_per_species = D['labels_per_species']
self.taxa = D['taxa']
self.obs_locs = D['obs_locs']
self.obs_locs_idx = D['obs_locs_idx']
def get_labels(self, species):
species = str(species)
lat = []
lon = []
gt = []
for hx in self.data:
cur_lat, cur_lon = h3.h3_to_geo(hx)
if species in self.data[hx]:
cur_label = int(len(self.data[hx][species]) > 0)
gt.append(cur_label)
lat.append(cur_lat)
lon.append(cur_lon)
lat = np.array(lat).astype(np.float32)
lon = np.array(lon).astype(np.float32)
obs_locs = np.vstack((lon, lat)).T
gt = np.array(gt).astype(np.float32)
return obs_locs, gt
def run_evaluation(self, model, enc):
results = {}
# set seeds:
np.random.seed(self.eval_params['seed'])
random.seed(self.eval_params['seed'])
# evaluate the geo model for each taxon
results['mean_average_precision'] = np.zeros((len(self.taxa)), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = np.array([np.where(np.array(self.train_params['class_to_taxa']) == tt)[0] for tt in self.taxa]).squeeze()
classes_of_interest = torch.from_numpy(classes_of_interest)
# generate model predictions for classes of interest at eval locations
with torch.no_grad():
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, wt.T).cpu().numpy()
split_rng = np.random.default_rng(self.eval_params['split_seed'])
for tt_id, tt in enumerate(self.taxa):
# generate ground truth labels for current taxa
cur_class_of_interest = np.where(self.taxa == tt)[0][0]
cur_loc_indices = np.array(self.loc_indices_per_species[cur_class_of_interest])
cur_labels = np.array(self.labels_per_species[cur_class_of_interest])
# apply per-species split:
assert self.eval_params['split'] in ['all', 'val', 'test']
if self.eval_params['split'] != 'all':
num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
idx_rand = split_rng.permutation(len(cur_labels))
if self.eval_params['split'] == 'val':
idx_sel = idx_rand[:num_val]
elif self.eval_params['split'] == 'test':
idx_sel = idx_rand[num_val:]
cur_loc_indices = cur_loc_indices[idx_sel]
cur_labels = cur_labels[idx_sel]
# extract model predictions for current taxa from prediction matrix:
pred = pred_mtx[cur_loc_indices, tt_id]
# compute the AP for each taxa
results['mean_average_precision'][tt_id] = average_precision_score((cur_labels > 0).astype(np.int32), pred)
valid_taxa = ~np.isnan(results['mean_average_precision'])
# store results
results['per_species_average_precision_all'] = copy.deepcopy(results['mean_average_precision'])
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorIUCN:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
with open(os.path.join(paths['iucn'], 'iucn_res_5.json'), 'r') as f:
self.data = json.load(f)
self.obs_locs = np.array(self.data['locs'], dtype=np.float32)
self.taxa = [int(tt) for tt in self.data['taxa_presence'].keys()]
def run_evaluation(self, model, enc):
results = {}
results['per_species_average_precision_all'] = np.zeros(len(self.taxa), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = torch.from_numpy(np.array([np.where(np.array(self.train_params['class_to_taxa']) == tt)[0] for tt in self.taxa]).squeeze())
with torch.no_grad():
# generate model predictions for classes of interest at eval locations
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, wt.T)
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) == 0:
# taxa of interest is not in the model
pred = None
else:
# extract model predictions for current taxa from prediction matrix
pred = pred_mtx[:, tt_id]
# evaluate accuracy
if pred is None:
results['per_species_average_precision_all'][tt_id] = np.nan
else:
gt = np.zeros(obs_locs.shape[0], dtype=np.float32)
gt[self.data['taxa_presence'][str(tt)]] = 1.0
# average precision score:
results['per_species_average_precision_all'][tt_id] = average_precision_score(gt, pred)
valid_taxa = ~np.isnan(results['per_species_average_precision_all'])
# store results
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorGeoPrior:
def __init__(self, train_params, eval_params):
# store parameters:
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
# load vision model predictions:
self.data = np.load(os.path.join(paths['geo_prior'], 'geo_prior_model_preds.npz'))
print('\n', self.data['probs'].shape[0], 'total test observations')
# load locations:
meta = pd.read_csv(os.path.join(paths['geo_prior'], 'geo_prior_model_meta.csv'))
self.obs_locs = np.vstack((meta['longitude'].values, meta['latitude'].values)).T.astype(np.float32)
# taxonomic mapping:
self.taxon_map = self.find_mapping_between_models(self.data['model_to_taxa'], self.train_params['class_to_taxa'])
print(self.taxon_map.shape[0], 'out of', len(self.data['model_to_taxa']), 'taxa in both vision and geo models')
def find_mapping_between_models(self, vision_taxa, geo_taxa):
# this will output an array of size N_overlap X 2
# the first column will be the indices of the vision model, and the second is their
# corresponding index in the geo model
taxon_map = np.ones((vision_taxa.shape[0], 2), dtype=np.int32)*-1
taxon_map[:, 0] = np.arange(vision_taxa.shape[0])
geo_taxa_arr = np.array(geo_taxa)
for tt_id, tt in enumerate(vision_taxa):
ind = np.where(geo_taxa_arr==tt)[0]
if len(ind) > 0:
taxon_map[tt_id, 1] = ind[0]
inds = np.where(taxon_map[:, 1]>-1)[0]
taxon_map = taxon_map[inds, :]
return taxon_map
def convert_to_inat_vision_order(self, geo_pred_ip, vision_top_k_prob, vision_top_k_inds, vision_taxa, taxon_map):
# this is slow as we turn the sparse input back into the same size as the dense one
vision_pred = np.zeros((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
geo_pred = np.ones((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
vision_pred[np.arange(vision_pred.shape[0])[..., np.newaxis], vision_top_k_inds] = vision_top_k_prob
geo_pred[:, taxon_map[:, 0]] = geo_pred_ip[:, taxon_map[:, 1]]
return geo_pred, vision_pred
def run_evaluation(self, model, enc):
results = {}
# loop over in batches
batch_start = np.hstack((np.arange(0, self.data['probs'].shape[0], self.eval_params['batch_size']), self.data['probs'].shape[0]))
correct_pred = np.zeros(self.data['probs'].shape[0])
print('\nbid\t w geo\t wo geo')
for bb_id, bb in enumerate(range(len(batch_start)-1)):
batch_inds = np.arange(batch_start[bb], batch_start[bb+1])
vision_probs = self.data['probs'][batch_inds, :]
vision_inds = self.data['inds'][batch_inds, :]
gt = self.data['labels'][batch_inds]
obs_locs_batch = torch.from_numpy(self.obs_locs[batch_inds, :]).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs_batch)
with torch.no_grad():
geo_pred = model(loc_feat).cpu().numpy()
geo_pred, vision_pred = self.convert_to_inat_vision_order(geo_pred, vision_probs, vision_inds,
self.data['model_to_taxa'], self.taxon_map)
comb_pred = np.argmax(vision_pred*geo_pred, 1)
comb_pred = (comb_pred==gt)
correct_pred[batch_inds] = comb_pred
results['vision_only_top_1'] = float((self.data['inds'][:, -1] == self.data['labels']).mean())
results['vision_geo_top_1'] = float(correct_pred.mean())
return results
def report(self, results):
print('\nOverall accuracy vision only model', round(results['vision_only_top_1'], 3))
print('Overall accuracy of geo model ', round(results['vision_geo_top_1'], 3))
print('Gain ', round(results['vision_geo_top_1'] - results['vision_only_top_1'], 3))
class EvaluatorGeoFeature:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
self.data_path = paths['geo_feature']
self.country_mask = tifffile.imread(os.path.join(paths['masks'], 'USA_MASK.tif')) == 1
self.raster_names = ['ABOVE_GROUND_CARBON', 'ELEVATION', 'LEAF_AREA_INDEX', 'NON_TREE_VEGITATED', 'NOT_VEGITATED', 'POPULATION_DENSITY', 'SNOW_COVER', 'SOIL_MOISTURE', 'TREE_COVER']
self.raster_names_log_transform = ['POPULATION_DENSITY']
def load_raster(self, raster_name, log_transform=False):
raster = tifffile.imread(os.path.join(self.data_path, raster_name + '.tif')).astype(np.float32)
valid_mask = ~np.isnan(raster).copy() & self.country_mask
# log scaling:
if log_transform:
raster[valid_mask] = np.log1p(raster[valid_mask] - raster[valid_mask].min())
# 0/1 scaling:
raster[valid_mask] -= raster[valid_mask].min()
raster[valid_mask] /= raster[valid_mask].max()
return raster, valid_mask
def get_split_labels(self, raster, split_ids, split_of_interest):
# get the GT labels for a subset
inds_y, inds_x = np.where(split_ids==split_of_interest)
return raster[inds_y, inds_x]
def get_split_feats(self, model, enc, split_ids, split_of_interest):
locs = utils.coord_grid(self.country_mask.shape, split_ids=split_ids, split_of_interest=split_of_interest)
locs = torch.from_numpy(locs).to(self.eval_params['device'])
locs_enc = enc.encode(locs)
with torch.no_grad():
feats = model(locs_enc, return_feats=True).cpu().numpy()
return feats
def run_evaluation(self, model, enc):
results = {}
for raster_name in self.raster_names:
do_log_transform = raster_name in self.raster_names_log_transform
raster, valid_mask = self.load_raster(raster_name, do_log_transform)
split_ids = utils.create_spatial_split(raster, valid_mask, cell_size=self.eval_params['cell_size'])
feats_train = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=1)
feats_test = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=2)
labels_train = self.get_split_labels(raster, split_ids, 1)
labels_test = self.get_split_labels(raster, split_ids, 2)
scaler = MinMaxScaler()
feats_train_scaled = scaler.fit_transform(feats_train)
feats_test_scaled = scaler.transform(feats_test)
clf = RidgeCV(alphas=(0.1, 1.0, 10.0), normalize=False, cv=10, fit_intercept=True, scoring='r2').fit(feats_train_scaled, labels_train)
train_score = clf.score(feats_train_scaled, labels_train)
test_score = clf.score(feats_test_scaled, labels_test)
results[f'train_r2_{raster_name}'] = float(train_score)
results[f'test_r2_{raster_name}'] = float(test_score)
results[f'alpha_{raster_name}'] = float(clf.alpha_)
return results
def report(self, results):
report_fields = [x for x in results if 'test_r2' in x]
for field in report_fields:
print(f'{field}: {results[field]}')
print(np.mean([results[field] for field in report_fields]))
def launch_eval_run(overrides):
eval_params = setup.get_default_params_eval(overrides)
# set up model:
eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
train_params = torch.load(eval_params['model_path'], map_location='cpu')
model = models.get_model(train_params['params'])
model.load_state_dict(train_params['state_dict'], strict=True)
model = model.to(eval_params['device'])
model.eval()
# create input encoder:
if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
raster = datasets.load_env().to(eval_params['device'])
else:
raster = None
enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster)
t = time.time()
if eval_params['eval_type'] == 'snt':
eval_params['split'] = 'test' # val, test, all
eval_params['val_frac'] = 0.50
eval_params['split_seed'] = 7499
evaluator = EvaluatorSNT(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'iucn':
evaluator = EvaluatorIUCN(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'geo_prior':
evaluator = EvaluatorGeoPrior(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'geo_feature':
evaluator = EvaluatorGeoFeature(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
else:
raise NotImplementedError('Eval type not implemented.')
print(f'evaluation completed in {np.around((time.time()-t)/60, 1)} min')
return results