Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
def bbox_size_loss(pred_size, gt_size): | |
""" | |
Bounding box size loss. Only compute loss where there is a bounding box. | |
""" | |
gt_size_mask = (gt_size > 0).float() | |
return (F.l1_loss(pred_size*gt_size_mask, gt_size, reduction='sum') / (gt_size_mask.sum() + 1e-5)) | |
def focal_loss(pred, gt, weights=None, valid_mask=None): | |
""" | |
Focal loss adapted from CornerNet: Detecting Objects as Paired Keypoints | |
pred (batch x c x h x w) | |
gt (batch x c x h x w) | |
""" | |
eps = 1e-5 | |
beta = 4 | |
alpha = 2 | |
pos_inds = gt.eq(1).float() | |
neg_inds = gt.lt(1).float() | |
pos_loss = torch.log(pred + eps) * torch.pow(1 - pred, alpha) * pos_inds | |
neg_loss = torch.log(1 - pred + eps) * torch.pow(pred, alpha) * torch.pow(1 - gt, beta) * neg_inds | |
if weights is not None: | |
pos_loss = pos_loss*weights | |
#neg_loss = neg_loss*weights | |
if valid_mask is not None: | |
pos_loss = pos_loss*valid_mask | |
neg_loss = neg_loss*valid_mask | |
pos_loss = pos_loss.sum() | |
neg_loss = neg_loss.sum() | |
num_pos = pos_inds.float().sum() | |
if num_pos == 0: | |
loss = -neg_loss | |
else: | |
loss = -(pos_loss + neg_loss) / num_pos | |
return loss | |
def mse_loss(pred, gt, weights=None, valid_mask=None): | |
""" | |
Mean squared error loss. | |
""" | |
if valid_mask is None: | |
op = ((gt-pred)**2).mean() | |
else: | |
op = (valid_mask*((gt-pred)**2)).sum() / valid_mask.sum() | |
return op | |