batdetect2 / bat_detect /finetune /prep_data_finetune.py
Oisin Mac Aodha
added bat code
9ace58a
raw
history blame
6.07 kB
import numpy as np
import argparse
import os
import json
import sys
sys.path.append(os.path.join('..', '..'))
import bat_detect.train.train_utils as tu
def print_dataset_stats(data, split_name, classes_to_ignore):
print('\nSplit:', split_name)
print('Num files:', len(data))
class_cnts = {}
for dd in data:
for aa in dd['annotation']:
if aa['class'] not in classes_to_ignore:
if aa['class'] in class_cnts:
class_cnts[aa['class']] += 1
else:
class_cnts[aa['class']] = 1
if len(class_cnts) == 0:
class_names = []
else:
class_names = np.sort([*class_cnts]).tolist()
print('Class count:')
str_len = np.max([len(cc) for cc in class_names]) + 5
for ii, cc in enumerate(class_names):
print(str(ii).ljust(5) + cc.ljust(str_len) + str(class_cnts[cc]))
return class_names
def load_file_names(file_name):
if os.path.isfile(file_name):
with open(file_name) as da:
files = [line.rstrip() for line in da.readlines()]
for ff in files:
if ff.lower()[-3:] != 'wav':
print('Error: Filenames need to end in .wav - ', ff)
assert(False)
else:
print('Error: Input file not found - ', file_name)
assert(False)
return files
if __name__ == "__main__":
info_str = '\nBatDetect - Prepare Data for Finetuning\n'
print(info_str)
parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', type=str, help='Name to call your dataset')
parser.add_argument('audio_dir', type=str, help='Input directory for audio')
parser.add_argument('ann_dir', type=str, help='Input directory for where the audio annotations are stored')
parser.add_argument('op_dir', type=str, help='Path where the train and test splits will be stored')
parser.add_argument('--percent_val', type=float, default=0.20,
help='Hold out this much data for validation. Should be number between 0 and 1')
parser.add_argument('--rand_seed', type=int, default=2001,
help='Random seed used for creating the validation split')
parser.add_argument('--train_file', type=str, default='',
help='Text file where each line is a wav file in train split')
parser.add_argument('--test_file', type=str, default='',
help='Text file where each line is a wav file in test split')
parser.add_argument('--input_class_names', type=str, default='',
help='Specify names of classes that you want to change. Separate with ";"')
parser.add_argument('--output_class_names', type=str, default='',
help='New class names to use instead. One to one mapping with "--input_class_names". \
Separate with ";"')
args = vars(parser.parse_args())
np.random.seed(args['rand_seed'])
classes_to_ignore = ['', ' ', 'Unknown', 'Not Bat']
generic_class = ['Bat']
events_of_interest = ['Echolocation']
if args['input_class_names'] != '' and args['output_class_names'] != '':
# change the names of the classes
ip_names = args['input_class_names'].split(';')
op_names = args['output_class_names'].split(';')
name_dict = dict(zip(ip_names, op_names))
else:
name_dict = False
# load annotations
data_all, _, _ = tu.load_set_of_anns({'ann_path': args['ann_dir'], 'wav_path': args['audio_dir']},
classes_to_ignore, events_of_interest, False, False,
list_of_anns=True, filter_issues=True, name_replace=name_dict)
print('Dataset name: ' + args['dataset_name'])
print('Audio directory: ' + args['audio_dir'])
print('Annotation directory: ' + args['ann_dir'])
print('Ouput directory: ' + args['op_dir'])
print('Num annotated files: ' + str(len(data_all)))
if args['train_file'] != '' and args['test_file'] != '':
# user has specifed the train / test split
train_files = load_file_names(args['train_file'])
test_files = load_file_names(args['test_file'])
file_names_all = [dd['id'] for dd in data_all]
train_inds = [file_names_all.index(ff) for ff in train_files if ff in file_names_all]
test_inds = [file_names_all.index(ff) for ff in test_files if ff in file_names_all]
else:
# split the data into train and test at the file level
num_exs = len(data_all)
test_inds = np.random.choice(np.arange(num_exs), int(num_exs*args['percent_val']), replace=False)
test_inds = np.sort(test_inds)
train_inds = np.setdiff1d(np.arange(num_exs), test_inds)
data_train = [data_all[ii] for ii in train_inds]
data_test = [data_all[ii] for ii in test_inds]
if not os.path.isdir(args['op_dir']):
os.makedirs(args['op_dir'])
op_name = os.path.join(args['op_dir'], args['dataset_name'])
op_name_train = op_name + '_TRAIN.json'
op_name_test = op_name + '_TEST.json'
class_un_train = print_dataset_stats(data_train, 'Train', classes_to_ignore)
class_un_test = print_dataset_stats(data_test, 'Test', classes_to_ignore)
if len(data_train) > 0 and len(data_test) > 0:
if class_un_train != class_un_test:
print('\nError: some classes are not in both the training and test sets.\
\nTry a different random seed "--rand_seed".')
assert False
print('\n')
if len(data_train) == 0:
print('No train annotations to save')
else:
print('Saving: ', op_name_train)
with open(op_name_train, 'w') as da:
json.dump(data_train, da, indent=2)
if len(data_test) == 0:
print('No test annotations to save')
else:
print('Saving: ', op_name_test)
with open(op_name_test, 'w') as da:
json.dump(data_test, da, indent=2)