Spaces:
Sleeping
Sleeping
Create tsr/models/isosurface.py
Browse files- tsr/models/isosurface.py +52 -0
tsr/models/isosurface.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torchmcubes import marching_cubes
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class IsosurfaceHelper(nn.Module):
|
| 10 |
+
points_range: Tuple[float, float] = (0, 1)
|
| 11 |
+
|
| 12 |
+
@property
|
| 13 |
+
def grid_vertices(self) -> torch.FloatTensor:
|
| 14 |
+
raise NotImplementedError
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class MarchingCubeHelper(IsosurfaceHelper):
|
| 18 |
+
def __init__(self, resolution: int) -> None:
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.resolution = resolution
|
| 21 |
+
self.mc_func: Callable = marching_cubes
|
| 22 |
+
self._grid_vertices: Optional[torch.FloatTensor] = None
|
| 23 |
+
|
| 24 |
+
@property
|
| 25 |
+
def grid_vertices(self) -> torch.FloatTensor:
|
| 26 |
+
if self._grid_vertices is None:
|
| 27 |
+
# keep the vertices on CPU so that we can support very large resolution
|
| 28 |
+
x, y, z = (
|
| 29 |
+
torch.linspace(*self.points_range, self.resolution),
|
| 30 |
+
torch.linspace(*self.points_range, self.resolution),
|
| 31 |
+
torch.linspace(*self.points_range, self.resolution),
|
| 32 |
+
)
|
| 33 |
+
x, y, z = torch.meshgrid(x, y, z, indexing="ij")
|
| 34 |
+
verts = torch.cat(
|
| 35 |
+
[x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1
|
| 36 |
+
).reshape(-1, 3)
|
| 37 |
+
self._grid_vertices = verts
|
| 38 |
+
return self._grid_vertices
|
| 39 |
+
|
| 40 |
+
def forward(
|
| 41 |
+
self,
|
| 42 |
+
level: torch.FloatTensor,
|
| 43 |
+
) -> Tuple[torch.FloatTensor, torch.LongTensor]:
|
| 44 |
+
level = -level.view(self.resolution, self.resolution, self.resolution)
|
| 45 |
+
try:
|
| 46 |
+
v_pos, t_pos_idx = self.mc_func(level.detach(), 0.0)
|
| 47 |
+
except AttributeError:
|
| 48 |
+
print("torchmcubes was not compiled with CUDA support, use CPU version instead.")
|
| 49 |
+
v_pos, t_pos_idx = self.mc_func(level.detach().cpu(), 0.0)
|
| 50 |
+
v_pos = v_pos[..., [2, 1, 0]]
|
| 51 |
+
v_pos = v_pos / (self.resolution - 1.0)
|
| 52 |
+
return v_pos.to(level.device), t_pos_idx.to(level.device)
|