maaz77's picture
initial commit
b051840 verified
raw
history blame
1.66 kB
import streamlit as st
from transformers import pipeline
import nltk
import re
import string
# Download necessary NLTK resources
nltk.download('punkt')
nltk.download('wordnet')
# Load the sentiment analysis model
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
# Text preprocessing functions
def remove_urls(text):
return re.sub(r'http[s]?://\S+', '', text)
def remove_punctuation(text):
regular_punct = string.punctuation
return re.sub(r'[' + regular_punct + ']', '', text)
def lower_case(text):
return text.lower()
def lemmatize(text):
wordnet_lemmatizer = nltk.WordNetLemmatizer()
tokens = nltk.word_tokenize(text)
lemmatized_text = [wordnet_lemmatizer.lemmatize(w) for w in tokens]
return ' '.join(lemmatized_text)
# Streamlit UI
def main():
st.title("Sentiment Analysis")
st.write("Enter the text you'd like to analyze:")
user_input = st.text_area("Text Input", height=150)
if st.button("Analyze Sentiment"):
if user_input:
# Preprocess the text
text = remove_urls(user_input)
text = remove_punctuation(text)
text = lower_case(text)
text = lemmatize(text)
# Perform sentiment analysis
try:
result = sentiment_analyzer(text)
st.write(result)
except Exception as e:
st.error(f"Error analyzing sentiment: {str(e)}")
else:
st.error("Please enter some text to analyze.")
if __name__ == "__main__":
main()