Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pdfplumber
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
5 |
+
from llama_index.llms.huggingface import HuggingFaceLLM as LlamaHuggingFaceLLM
|
6 |
+
from llama_index.core.prompts.prompts import SimpleInputPrompt
|
7 |
+
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
|
8 |
+
|
9 |
+
# Setup for caching the index and LLM to avoid reloading
|
10 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
11 |
+
def setup_llama_index():
|
12 |
+
# Define and configure the embedding model
|
13 |
+
embed_model = LangchainEmbedding(SentenceTransformer('sentence-transformers/all-mpnet-base-v2'))
|
14 |
+
|
15 |
+
# Define and configure the Llama LLM
|
16 |
+
llama_llm = LlamaHuggingFaceLLM(
|
17 |
+
context_window=4096,
|
18 |
+
max_new_tokens=256,
|
19 |
+
generate_kwargs={"temperature": 0.0, "do_sample": False},
|
20 |
+
system_prompt="You are a Q&A assistant...",
|
21 |
+
query_wrapper_prompt=SimpleInputPrompt("{query_str}"),
|
22 |
+
tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
|
23 |
+
model_name="HuggingFaceH4/zephyr-7b-beta",
|
24 |
+
device_map="auto",
|
25 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_8bit": True}
|
26 |
+
)
|
27 |
+
|
28 |
+
# Load documents and create the index
|
29 |
+
documents = SimpleDirectoryReader('/content/data').load_data() # Assuming document data is in this directory
|
30 |
+
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llama_llm, embed_model=embed_model)
|
31 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
32 |
+
return index.as_query_engine()
|
33 |
+
|
34 |
+
def extract_text_from_pdf(file):
|
35 |
+
""" Extract text from the uploaded PDF file using pdfplumber. """
|
36 |
+
text = []
|
37 |
+
with pdfplumber.open(file) as pdf:
|
38 |
+
for page in pdf.pages:
|
39 |
+
page_text = page.extract_text()
|
40 |
+
if page_text: # Ensure that text extraction was successful
|
41 |
+
text.append(page_text)
|
42 |
+
return " ".join(text)
|
43 |
+
|
44 |
+
def main():
|
45 |
+
st.title('PDF Reader and Question Answering with RAG-like Model')
|
46 |
+
|
47 |
+
# Load the query engine only once
|
48 |
+
query_engine = setup_llama_index()
|
49 |
+
|
50 |
+
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
51 |
+
if uploaded_file is not None:
|
52 |
+
document_text = extract_text_from_pdf(uploaded_file)
|
53 |
+
if document_text:
|
54 |
+
st.text_area("Extracted Text", document_text, height=300)
|
55 |
+
else:
|
56 |
+
st.error("No text could be extracted from the PDF. Please check the file and try again.")
|
57 |
+
|
58 |
+
question = st.text_input("Ask a question based on the PDF")
|
59 |
+
if st.button("Get Answer"):
|
60 |
+
if question:
|
61 |
+
# Simulate RAG-like query using the index and LLM
|
62 |
+
response = query_engine.query(question)
|
63 |
+
st.text_area("Answer", response, height=150)
|
64 |
+
else:
|
65 |
+
st.error("Please enter a question to get an answer.")
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
main()
|