ma4389's picture
Update app.py
1e3bcc3 verified
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import gradio as gr
# ๐Ÿ–ฅ๏ธ Device (CPU for Gradio unless you have GPU setup)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ๐Ÿ”จ Rebuild your model
resnet = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
in_features = resnet.fc.in_features
resnet.fc = nn.Sequential(
nn.Linear(in_features, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, 3) # 3 classes: dog, wild, cat
)
resnet = resnet.to(device)
# ๐Ÿ“ฅ Load saved weights
resnet.load_state_dict(torch.load("best_model.pth", map_location=device))
resnet.eval()
# ๐Ÿ–ผ๏ธ Validation transforms
val_transforms = transforms.Compose([
transforms.Lambda(lambda img: img.convert("RGB")), # ๐Ÿง  Force 3-channel
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5]*3, std=[0.5]*3)
])
# ๐Ÿท๏ธ Class names
class_names = ["dog", "cat", "wild"]
# ๐Ÿ”ฎ Prediction function
def classify_image(img):
img = val_transforms(img).unsqueeze(0).to(device) # Add batch dim & send to device
with torch.no_grad():
outputs = resnet(img)
probs = torch.softmax(outputs, dim=1)
confidences = probs.squeeze().cpu().tolist()
predicted_class = class_names[torch.argmax(probs).item()]
return {class_names[i]: confidences[i] for i in range(len(class_names))}
# ๐ŸŽจ Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
title="Dog/Wild/Cat Classifier ๐Ÿถ๐Ÿฏ๐Ÿฑ",
description="Upload an image to classify it as Dog, Wild Animal, or Cat."
)
iface.launch()