Spaces:
Runtime error
Runtime error
/* | |
tests/test_class.cpp -- test py::class_ definitions and basic functionality | |
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | |
All rights reserved. Use of this source code is governed by a | |
BSD-style license that can be found in the LICENSE file. | |
*/ | |
// test_brace_initialization | |
struct NoBraceInitialization { | |
NoBraceInitialization(std::vector<int> v) : vec{std::move(v)} {} | |
template <typename T> | |
NoBraceInitialization(std::initializer_list<T> l) : vec(l) {} | |
std::vector<int> vec; | |
}; | |
TEST_SUBMODULE(class_, m) { | |
// test_instance | |
struct NoConstructor { | |
NoConstructor() = default; | |
NoConstructor(const NoConstructor &) = default; | |
NoConstructor(NoConstructor &&) = default; | |
static NoConstructor *new_instance() { | |
auto *ptr = new NoConstructor(); | |
print_created(ptr, "via new_instance"); | |
return ptr; | |
} | |
~NoConstructor() { print_destroyed(this); } | |
}; | |
py::class_<NoConstructor>(m, "NoConstructor") | |
.def_static("new_instance", &NoConstructor::new_instance, "Return an instance"); | |
// test_inheritance | |
class Pet { | |
public: | |
Pet(const std::string &name, const std::string &species) | |
: m_name(name), m_species(species) {} | |
std::string name() const { return m_name; } | |
std::string species() const { return m_species; } | |
private: | |
std::string m_name; | |
std::string m_species; | |
}; | |
class Dog : public Pet { | |
public: | |
Dog(const std::string &name) : Pet(name, "dog") {} | |
std::string bark() const { return "Woof!"; } | |
}; | |
class Rabbit : public Pet { | |
public: | |
Rabbit(const std::string &name) : Pet(name, "parrot") {} | |
}; | |
class Hamster : public Pet { | |
public: | |
Hamster(const std::string &name) : Pet(name, "rodent") {} | |
}; | |
class Chimera : public Pet { | |
Chimera() : Pet("Kimmy", "chimera") {} | |
}; | |
py::class_<Pet> pet_class(m, "Pet"); | |
pet_class | |
.def(py::init<std::string, std::string>()) | |
.def("name", &Pet::name) | |
.def("species", &Pet::species); | |
/* One way of declaring a subclass relationship: reference parent's class_ object */ | |
py::class_<Dog>(m, "Dog", pet_class) | |
.def(py::init<std::string>()); | |
/* Another way of declaring a subclass relationship: reference parent's C++ type */ | |
py::class_<Rabbit, Pet>(m, "Rabbit") | |
.def(py::init<std::string>()); | |
/* And another: list parent in class template arguments */ | |
py::class_<Hamster, Pet>(m, "Hamster") | |
.def(py::init<std::string>()); | |
/* Constructors are not inherited by default */ | |
py::class_<Chimera, Pet>(m, "Chimera"); | |
m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); }); | |
m.def("dog_bark", [](const Dog &dog) { return dog.bark(); }); | |
// test_automatic_upcasting | |
struct BaseClass { | |
BaseClass() = default; | |
BaseClass(const BaseClass &) = default; | |
BaseClass(BaseClass &&) = default; | |
virtual ~BaseClass() {} | |
}; | |
struct DerivedClass1 : BaseClass { }; | |
struct DerivedClass2 : BaseClass { }; | |
py::class_<BaseClass>(m, "BaseClass").def(py::init<>()); | |
py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>()); | |
py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>()); | |
m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); }); | |
m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); }); | |
m.def("return_class_n", [](int n) -> BaseClass* { | |
if (n == 1) return new DerivedClass1(); | |
if (n == 2) return new DerivedClass2(); | |
return new BaseClass(); | |
}); | |
m.def("return_none", []() -> BaseClass* { return nullptr; }); | |
// test_isinstance | |
m.def("check_instances", [](py::list l) { | |
return py::make_tuple( | |
py::isinstance<py::tuple>(l[0]), | |
py::isinstance<py::dict>(l[1]), | |
py::isinstance<Pet>(l[2]), | |
py::isinstance<Pet>(l[3]), | |
py::isinstance<Dog>(l[4]), | |
py::isinstance<Rabbit>(l[5]), | |
py::isinstance<UnregisteredType>(l[6]) | |
); | |
}); | |
// test_mismatched_holder | |
struct MismatchBase1 { }; | |
struct MismatchDerived1 : MismatchBase1 { }; | |
struct MismatchBase2 { }; | |
struct MismatchDerived2 : MismatchBase2 { }; | |
m.def("mismatched_holder_1", []() { | |
auto mod = py::module::import("__main__"); | |
py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1"); | |
py::class_<MismatchDerived1, MismatchBase1>(mod, "MismatchDerived1"); | |
}); | |
m.def("mismatched_holder_2", []() { | |
auto mod = py::module::import("__main__"); | |
py::class_<MismatchBase2>(mod, "MismatchBase2"); | |
py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>, | |
MismatchBase2>(mod, "MismatchDerived2"); | |
}); | |
// test_override_static | |
// #511: problem with inheritance + overwritten def_static | |
struct MyBase { | |
static std::unique_ptr<MyBase> make() { | |
return std::unique_ptr<MyBase>(new MyBase()); | |
} | |
}; | |
struct MyDerived : MyBase { | |
static std::unique_ptr<MyDerived> make() { | |
return std::unique_ptr<MyDerived>(new MyDerived()); | |
} | |
}; | |
py::class_<MyBase>(m, "MyBase") | |
.def_static("make", &MyBase::make); | |
py::class_<MyDerived, MyBase>(m, "MyDerived") | |
.def_static("make", &MyDerived::make) | |
.def_static("make2", &MyDerived::make); | |
// test_implicit_conversion_life_support | |
struct ConvertibleFromUserType { | |
int i; | |
ConvertibleFromUserType(UserType u) : i(u.value()) { } | |
}; | |
py::class_<ConvertibleFromUserType>(m, "AcceptsUserType") | |
.def(py::init<UserType>()); | |
py::implicitly_convertible<UserType, ConvertibleFromUserType>(); | |
m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; }); | |
m.def("implicitly_convert_variable", [](py::object o) { | |
// `o` is `UserType` and `r` is a reference to a temporary created by implicit | |
// conversion. This is valid when called inside a bound function because the temp | |
// object is attached to the same life support system as the arguments. | |
const auto &r = o.cast<const ConvertibleFromUserType &>(); | |
return r.i; | |
}); | |
m.add_object("implicitly_convert_variable_fail", [&] { | |
auto f = [](PyObject *, PyObject *args) -> PyObject * { | |
auto o = py::reinterpret_borrow<py::tuple>(args)[0]; | |
try { // It should fail here because there is no life support. | |
o.cast<const ConvertibleFromUserType &>(); | |
} catch (const py::cast_error &e) { | |
return py::str(e.what()).release().ptr(); | |
} | |
return py::str().release().ptr(); | |
}; | |
auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr}; | |
return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, nullptr, m.ptr())); | |
}()); | |
// test_operator_new_delete | |
struct HasOpNewDel { | |
std::uint64_t i; | |
static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); } | |
static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; } | |
static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); } | |
}; | |
struct HasOpNewDelSize { | |
std::uint32_t i; | |
static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); } | |
static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; } | |
static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); } | |
}; | |
struct AliasedHasOpNewDelSize { | |
std::uint64_t i; | |
static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); } | |
static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; } | |
static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); } | |
virtual ~AliasedHasOpNewDelSize() = default; | |
AliasedHasOpNewDelSize() = default; | |
AliasedHasOpNewDelSize(const AliasedHasOpNewDelSize&) = delete; | |
}; | |
struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize { | |
PyAliasedHasOpNewDelSize() = default; | |
PyAliasedHasOpNewDelSize(int) { } | |
std::uint64_t j; | |
}; | |
struct HasOpNewDelBoth { | |
std::uint32_t i[8]; | |
static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); } | |
static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; } | |
static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); } | |
static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); } | |
}; | |
py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>()); | |
py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>()); | |
py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>()); | |
py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize"); | |
aliased.def(py::init<>()); | |
aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize)); | |
aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize)); | |
// This test is actually part of test_local_bindings (test_duplicate_local), but we need a | |
// definition in a different compilation unit within the same module: | |
bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local()); | |
// test_bind_protected_functions | |
class ProtectedA { | |
protected: | |
int foo() const { return value; } | |
private: | |
int value = 42; | |
}; | |
class PublicistA : public ProtectedA { | |
public: | |
using ProtectedA::foo; | |
}; | |
py::class_<ProtectedA>(m, "ProtectedA") | |
.def(py::init<>()) | |
.def("foo", &PublicistA::foo); | |
.def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo)); | |
class ProtectedB { | |
public: | |
virtual ~ProtectedB() = default; | |
ProtectedB() = default; | |
ProtectedB(const ProtectedB &) = delete; | |
protected: | |
virtual int foo() const { return value; } | |
private: | |
int value = 42; | |
}; | |
class TrampolineB : public ProtectedB { | |
public: | |
int foo() const override { PYBIND11_OVERLOAD(int, ProtectedB, foo, ); } | |
}; | |
class PublicistB : public ProtectedB { | |
public: | |
using ProtectedB::foo; | |
}; | |
py::class_<ProtectedB, TrampolineB>(m, "ProtectedB") | |
.def(py::init<>()) | |
.def("foo", &PublicistB::foo); | |
.def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo)); | |
// test_brace_initialization | |
struct BraceInitialization { | |
int field1; | |
std::string field2; | |
}; | |
py::class_<BraceInitialization>(m, "BraceInitialization") | |
.def(py::init<int, const std::string &>()) | |
.def_readwrite("field1", &BraceInitialization::field1) | |
.def_readwrite("field2", &BraceInitialization::field2); | |
// We *don't* want to construct using braces when the given constructor argument maps to a | |
// constructor, because brace initialization could go to the wrong place (in particular when | |
// there is also an `initializer_list<T>`-accept constructor): | |
py::class_<NoBraceInitialization>(m, "NoBraceInitialization") | |
.def(py::init<std::vector<int>>()) | |
.def_readonly("vec", &NoBraceInitialization::vec); | |
// test_reentrant_implicit_conversion_failure | |
// #1035: issue with runaway reentrant implicit conversion | |
struct BogusImplicitConversion { | |
BogusImplicitConversion(const BogusImplicitConversion &) { } | |
}; | |
py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion") | |
.def(py::init<const BogusImplicitConversion &>()); | |
py::implicitly_convertible<int, BogusImplicitConversion>(); | |
// test_qualname | |
// #1166: nested class docstring doesn't show nested name | |
// Also related: tests that __qualname__ is set properly | |
struct NestBase {}; | |
struct Nested {}; | |
py::class_<NestBase> base(m, "NestBase"); | |
base.def(py::init<>()); | |
py::class_<Nested>(base, "Nested") | |
.def(py::init<>()) | |
.def("fn", [](Nested &, int, NestBase &, Nested &) {}) | |
.def("fa", [](Nested &, int, NestBase &, Nested &) {}, | |
"a"_a, "b"_a, "c"_a); | |
base.def("g", [](NestBase &, Nested &) {}); | |
base.def("h", []() { return NestBase(); }); | |
// test_error_after_conversion | |
// The second-pass path through dispatcher() previously didn't | |
// remember which overload was used, and would crash trying to | |
// generate a useful error message | |
struct NotRegistered {}; | |
struct StringWrapper { std::string str; }; | |
m.def("test_error_after_conversions", [](int) {}); | |
m.def("test_error_after_conversions", | |
[](StringWrapper) -> NotRegistered { return {}; }); | |
py::class_<StringWrapper>(m, "StringWrapper").def(py::init<std::string>()); | |
py::implicitly_convertible<std::string, StringWrapper>(); | |
struct alignas(1024) Aligned { | |
std::uintptr_t ptr() const { return (uintptr_t) this; } | |
}; | |
py::class_<Aligned>(m, "Aligned") | |
.def(py::init<>()) | |
.def("ptr", &Aligned::ptr); | |
// test_final | |
struct IsFinal final {}; | |
py::class_<IsFinal>(m, "IsFinal", py::is_final()); | |
// test_non_final_final | |
struct IsNonFinalFinal {}; | |
py::class_<IsNonFinalFinal>(m, "IsNonFinalFinal", py::is_final()); | |
struct PyPrintDestructor { | |
PyPrintDestructor() {} | |
~PyPrintDestructor() { | |
py::print("Print from destructor"); | |
} | |
void throw_something() { throw std::runtime_error("error"); } | |
}; | |
py::class_<PyPrintDestructor>(m, "PyPrintDestructor") | |
.def(py::init<>()) | |
.def("throw_something", &PyPrintDestructor::throw_something); | |
} | |
template <int N> class BreaksBase { public: | |
virtual ~BreaksBase() = default; | |
BreaksBase() = default; | |
BreaksBase(const BreaksBase&) = delete; | |
}; | |
template <int N> class BreaksTramp : public BreaksBase<N> {}; | |
// These should all compile just fine: | |
typedef py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>> DoesntBreak1; | |
typedef py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>> DoesntBreak2; | |
typedef py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>> DoesntBreak3; | |
typedef py::class_<BreaksBase<4>, BreaksTramp<4>> DoesntBreak4; | |
typedef py::class_<BreaksBase<5>> DoesntBreak5; | |
typedef py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>> DoesntBreak6; | |
typedef py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>> DoesntBreak7; | |
typedef py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>> DoesntBreak8; | |
CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8); | |
CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8); | |
CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique); | |
CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared); | |
// There's no nice way to test that these fail because they fail to compile; leave them here, | |
// though, so that they can be manually tested by uncommenting them (and seeing that compilation | |
// failures occurs). | |
// We have to actually look into the type: the typedef alone isn't enough to instantiate the type: | |
//// Two holder classes: | |
//typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1; | |
//CHECK_BROKEN(1); | |
//// Two aliases: | |
//typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2; | |
//CHECK_BROKEN(2); | |
//// Holder + 2 aliases | |
//typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3; | |
//CHECK_BROKEN(3); | |
//// Alias + 2 holders | |
//typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4; | |
//CHECK_BROKEN(4); | |
//// Invalid option (not a subclass or holder) | |
//typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5; | |
//CHECK_BROKEN(5); | |
//// Invalid option: multiple inheritance not supported: | |
//template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {}; | |
//typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8; | |
//CHECK_BROKEN(8); | |