LIVE / thrust /dependencies /cub /test /test_device_select_unique.cu
Xu Ma
update
1c3c0d9
raw
history blame
21.8 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Test of DeviceSelect::Unique utilities
******************************************************************************/
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <stdio.h>
#include <typeinfo>
#include <thrust/device_ptr.h>
#include <thrust/unique.h>
#include <cub/util_allocator.cuh>
#include <cub/iterator/counting_input_iterator.cuh>
#include <cub/device/device_select.cuh>
#include <thrust/device_ptr.h>
#include <thrust/unique.h>
#include "test_util.h"
using namespace cub;
//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------
bool g_verbose = false;
int g_timing_iterations = 0;
int g_repeat = 0;
float g_device_giga_bandwidth;
CachingDeviceAllocator g_allocator(true);
// Dispatch types
enum Backend
{
CUB, // CUB method
THRUST, // Thrust method
CDP, // GPU-based (dynamic parallelism) dispatch to CUB method
};
//---------------------------------------------------------------------
// Dispatch to different CUB DeviceSelect entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to unique entrypoint
*/
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
Int2Type<CUB> /*dispatch_to*/,
int timing_timing_iterations,
size_t */*d_temp_storage_bytes*/,
cudaError_t */*d_cdp_error*/,
void* d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
cudaError_t error = cudaSuccess;
for (int i = 0; i < timing_timing_iterations; ++i)
{
error = DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, stream, debug_synchronous);
}
return error;
}
//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to unique entrypoint
*/
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
__host__ __forceinline__
cudaError_t Dispatch(
Int2Type<THRUST> /*dispatch_to*/,
int timing_timing_iterations,
size_t */*d_temp_storage_bytes*/,
cudaError_t */*d_cdp_error*/,
void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
OffsetT num_items,
cudaStream_t /*stream*/,
bool /*debug_synchronous*/)
{
// The input value type
typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;
// The output value type
typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT; // ... else the output iterator's value type
if (d_temp_storage == 0)
{
temp_storage_bytes = 1;
}
else
{
thrust::device_ptr<OutputT> d_out_wrapper_end;
thrust::device_ptr<InputT> d_in_wrapper(d_in);
thrust::device_ptr<OutputT> d_out_wrapper(d_out);
for (int i = 0; i < timing_timing_iterations; ++i)
{
d_out_wrapper_end = thrust::unique_copy(d_in_wrapper, d_in_wrapper + num_items, d_out_wrapper);
}
OffsetT num_selected = OffsetT(d_out_wrapper_end - d_out_wrapper);
CubDebugExit(cudaMemcpy(d_num_selected_out, &num_selected, sizeof(OffsetT), cudaMemcpyHostToDevice));
}
return cudaSuccess;
}
//---------------------------------------------------------------------
// CUDA Nested Parallelism Test Kernel
//---------------------------------------------------------------------
/**
* Simple wrapper kernel to invoke DeviceSelect
*/
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
__global__ void CnpDispatchKernel(
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void* d_temp_storage,
size_t temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
OffsetT num_items,
bool debug_synchronous)
{
#ifndef CUB_CDP
(void)timing_timing_iterations;
(void)d_temp_storage_bytes;
(void)d_cdp_error;
(void)d_temp_storage;
(void)temp_storage_bytes;
(void)d_in;
(void)d_out;
(void)d_num_selected_out;
(void)num_items;
(void)debug_synchronous;
*d_cdp_error = cudaErrorNotSupported;
#else
*d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, debug_synchronous);
*d_temp_storage_bytes = temp_storage_bytes;
#endif
}
/**
* Dispatch to CDP kernel
*/
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
cudaError_t Dispatch(
Int2Type<CDP> dispatch_to,
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void* d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
// Invoke kernel to invoke device-side dispatch
CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, debug_synchronous);
// Copy out temp_storage_bytes
CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));
// Copy out error
cudaError_t retval;
CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
return retval;
}
//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------
/**
* Initialize problem
*/
template <typename T>
void Initialize(
int entropy_reduction,
T *h_in,
int num_items,
int max_segment)
{
unsigned int max_int = (unsigned int) -1;
int key = 0;
int i = 0;
while (i < num_items)
{
// Select number of repeating occurrences for the current run
int repeat;
if (max_segment < 0)
{
repeat = num_items;
}
else if (max_segment < 2)
{
repeat = 1;
}
else
{
RandomBits(repeat, entropy_reduction);
repeat = (int) ((double(repeat) * double(max_segment)) / double(max_int));
repeat = CUB_MAX(1, repeat);
}
int j = i;
while (j < CUB_MIN(i + repeat, num_items))
{
InitValue(INTEGER_SEED, h_in[j], key);
j++;
}
i = j;
key++;
}
if (g_verbose)
{
printf("Input:\n");
DisplayResults(h_in, num_items);
printf("\n\n");
}
}
/**
* Solve unique problem
*/
template <
typename InputIteratorT,
typename T>
int Solve(
InputIteratorT h_in,
T *h_reference,
int num_items)
{
int num_selected = 0;
if (num_items > 0)
{
h_reference[num_selected] = h_in[0];
num_selected++;
}
for (int i = 1; i < num_items; ++i)
{
if (h_in[i] != h_in[i - 1])
{
h_reference[num_selected] = h_in[i];
num_selected++;
}
}
return num_selected;
}
/**
* Test DeviceSelect for a given problem input
*/
template <
Backend BACKEND,
typename DeviceInputIteratorT,
typename T>
void Test(
DeviceInputIteratorT d_in,
T *h_reference,
int num_selected,
int num_items)
{
// Allocate device output array and num selected
T *d_out = NULL;
int *d_num_selected_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(T) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_num_selected_out, sizeof(int)));
// Allocate CDP device arrays
size_t *d_temp_storage_bytes = NULL;
cudaError_t *d_cdp_error = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, true));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Clear device output array
CubDebugExit(cudaMemset(d_out, 0, sizeof(T) * num_items));
CubDebugExit(cudaMemset(d_num_selected_out, 0, sizeof(int)));
// Run warmup/correctness iteration
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, true));
// Check for correctness (and display results, if specified)
int compare1 = CompareDeviceResults(h_reference, d_out, num_selected, true, g_verbose);
printf("\t Data %s ", compare1 ? "FAIL" : "PASS");
int compare2 = CompareDeviceResults(&num_selected, d_num_selected_out, 1, true, g_verbose);
printf("\t Count %s ", compare2 ? "FAIL" : "PASS");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Performance
GpuTimer gpu_timer;
gpu_timer.Start();
CubDebugExit(Dispatch(Int2Type<BACKEND>(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, false));
gpu_timer.Stop();
float elapsed_millis = gpu_timer.ElapsedMillis();
// Display performance
if (g_timing_iterations > 0)
{
float avg_millis = elapsed_millis / g_timing_iterations;
float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f;
float giga_bandwidth = float((num_items + num_selected) * sizeof(T)) / avg_millis / 1000.0f / 1000.0f;
printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s, %.1f%% peak", avg_millis, giga_rate, giga_bandwidth, giga_bandwidth / g_device_giga_bandwidth * 100.0);
}
printf("\n\n");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Cleanup
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_num_selected_out) CubDebugExit(g_allocator.DeviceFree(d_num_selected_out));
if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
// Correctness asserts
AssertEquals(0, compare1 | compare2);
}
/**
* Test DeviceSelect on pointer type
*/
template <
Backend BACKEND,
typename T>
void TestPointer(
int num_items,
int entropy_reduction,
int max_segment)
{
// Allocate host arrays
T* h_in = new T[num_items];
T* h_reference = new T[num_items];
// Initialize problem and solution
Initialize(entropy_reduction, h_in, num_items, max_segment);
int num_selected = Solve(h_in, h_reference, num_items);
printf("\nPointer %s cub::DeviceSelect::Unique %d items, %d selected (avg run length %.3f), %s %d-byte elements, entropy_reduction %d\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
num_items, num_selected, float(num_items) / num_selected,
typeid(T).name(),
(int) sizeof(T),
entropy_reduction);
fflush(stdout);
// Allocate problem device arrays
T *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(T) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(T) * num_items, cudaMemcpyHostToDevice));
// Run Test
Test<BACKEND>(d_in, h_reference, num_selected, num_items);
// Cleanup
if (h_in) delete[] h_in;
if (h_reference) delete[] h_reference;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
}
/**
* Test DeviceSelect on iterator type
*/
template <
Backend BACKEND,
typename T>
void TestIterator(
int num_items)
{
// Use a counting iterator as the input
CountingInputIterator<T, int> h_in(0);
// Allocate host arrays
T* h_reference = new T[num_items];
// Initialize problem and solution
int num_selected = Solve(h_in, h_reference, num_items);
printf("\nIterator %s cub::DeviceSelect::Unique %d items, %d selected (avg run length %.3f), %s %d-byte elements\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
num_items, num_selected, float(num_items) / num_selected,
typeid(T).name(),
(int) sizeof(T));
fflush(stdout);
// Run Test
Test<BACKEND>(h_in, h_reference, num_selected, num_items);
// Cleanup
if (h_reference) delete[] h_reference;
}
/**
* Test different gen modes
*/
template <
Backend BACKEND,
typename T>
void Test(
int num_items)
{
for (int max_segment = 1; ((max_segment > 0) && (max_segment < num_items)); max_segment *= 11)
{
TestPointer<BACKEND, T>(num_items, 0, max_segment);
TestPointer<BACKEND, T>(num_items, 2, max_segment);
TestPointer<BACKEND, T>(num_items, 7, max_segment);
}
}
/**
* Test different dispatch
*/
template <
typename T>
void TestOp(
int num_items)
{
Test<CUB, T>(num_items);
#ifdef CUB_CDP
Test<CDP, T>(num_items);
#endif
}
/**
* Test different input sizes
*/
template <typename T>
void Test(
int num_items)
{
if (num_items < 0)
{
TestOp<T>(0);
TestOp<T>(1);
TestOp<T>(100);
TestOp<T>(10000);
TestOp<T>(1000000);
}
else
{
TestOp<T>(num_items);
}
}
//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------
/**
* Main
*/
int main(int argc, char** argv)
{
int num_items = -1;
int entropy_reduction = 0;
int maxseg = 1000;
// Initialize command line
CommandLineArgs args(argc, argv);
g_verbose = args.CheckCmdLineFlag("v");
args.GetCmdLineArgument("n", num_items);
args.GetCmdLineArgument("i", g_timing_iterations);
args.GetCmdLineArgument("repeat", g_repeat);
args.GetCmdLineArgument("maxseg", maxseg);
args.GetCmdLineArgument("entropy", entropy_reduction);
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--n=<input items> "
"[--i=<timing iterations> "
"[--device=<device-id>] "
"[--maxseg=<max segment length>]"
"[--entropy=<segment length bit entropy reduction rounds>]"
"[--repeat=<repetitions of entire test suite>]"
"[--v] "
"[--cdp]"
"\n", argv[0]);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
g_device_giga_bandwidth = args.device_giga_bandwidth;
printf("\n");
#ifdef QUICKER_TEST
// Compile/run basic CUB test
if (num_items < 0) num_items = 32000000;
TestPointer<CUB, int>( num_items, entropy_reduction, maxseg);
#elif defined(QUICK_TEST)
// Get device ordinal
int device_ordinal;
CubDebugExit(cudaGetDevice(&device_ordinal));
// Get device SM version
int sm_version;
CubDebugExit(SmVersion(sm_version, device_ordinal));
// Compile/run quick tests
if (num_items < 0) num_items = 32000000;
printf("-- Iterator ----------------------------\n");
TestIterator<CUB, int>( num_items);
printf("----------------------------\n");
TestPointer<CUB, char>( num_items * ((sm_version <= 130) ? 1 : 4), entropy_reduction, maxseg);
TestPointer<THRUST, char>( num_items * ((sm_version <= 130) ? 1 : 4), entropy_reduction, maxseg);
printf("----------------------------\n");
TestPointer<CUB, short>( num_items * ((sm_version <= 130) ? 1 : 2), entropy_reduction, maxseg);
TestPointer<THRUST, short>( num_items * ((sm_version <= 130) ? 1 : 2), entropy_reduction, maxseg);
printf("----------------------------\n");
TestPointer<CUB, int>( num_items, entropy_reduction, maxseg);
TestPointer<THRUST, int>( num_items, entropy_reduction, maxseg);
printf("----------------------------\n");
TestPointer<CUB, long long>( num_items / 2, entropy_reduction, maxseg);
TestPointer<THRUST, long long>(num_items / 2, entropy_reduction, maxseg);
printf("----------------------------\n");
TestPointer<CUB, TestFoo>( num_items / 4, entropy_reduction, maxseg);
TestPointer<THRUST, TestFoo>( num_items / 4, entropy_reduction, maxseg);
#else
// Compile/run thorough tests
for (int i = 0; i <= g_repeat; ++i)
{
// Test different input types
Test<unsigned char>(num_items);
Test<unsigned short>(num_items);
Test<unsigned int>(num_items);
Test<unsigned long long>(num_items);
Test<uchar2>(num_items);
Test<ushort2>(num_items);
Test<uint2>(num_items);
Test<ulonglong2>(num_items);
Test<uchar4>(num_items);
Test<ushort4>(num_items);
Test<uint4>(num_items);
Test<ulonglong4>(num_items);
Test<TestFoo>(num_items);
Test<TestBar>(num_items);
}
#endif
return 0;
}