xzl12306's picture
first commit
d6bc023
raw
history blame contribute delete
No virus
8.01 kB
from typing import Union
import math
import torch
import torch.nn as nn
import re
from einops import rearrange, repeat
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class ResamplerBlock(nn.Module):
def __init__(
self,
hidden_size: int = 768,
image_hidden_size: int = 1024,
num_heads: int = 12,
intermediate_size: int = None
):
super().__init__()
assert hidden_size % num_heads == 0, "For MHSA, you must have number of heads divisible by initial hidden size"
intermediate_size = hidden_size * 4 if intermediate_size is None else intermediate_size
# intermediate_size = hidden_size * 4
self.scale = 1 / math.sqrt(hidden_size // num_heads)
self.num_heads = num_heads
self.to_q = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_k = nn.Linear(image_hidden_size, hidden_size, bias=False)
self.to_v = nn.Linear(image_hidden_size, hidden_size, bias=False)
self.to_out = nn.Linear(hidden_size, hidden_size, bias=False)
self.feed_forward = nn.Sequential(
*[
nn.LayerNorm(hidden_size),
nn.Linear(hidden_size, intermediate_size, bias=False),
nn.GELU(),
nn.Linear(intermediate_size, hidden_size, bias=False),
]
)
# prenorm for image features
self.norm_image = nn.LayerNorm(image_hidden_size)
self.norm_hidden = nn.LayerNorm(hidden_size)
def forward(self, hidden_states: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
# prenorm
x = self.norm_image(x)
residual_hidden_states = hidden_states
hidden_states = self.norm_hidden(hidden_states)
# compute Q, K, V
queries = self.to_q(hidden_states)
keys = self.to_k(x)
values = self.to_v(x)
# rearrange them into multi-head format
queries = rearrange(queries, "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(keys, "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(values, "b n (h d) -> b h n d", h=self.num_heads)
# rescale
queries = self.scale * queries
# compute QK^T
scores = torch.einsum("... i d, ... j d -> ... i j", queries, keys)
# for stability
scores = scores - scores.amax(dim=-1, keepdim=True).detach()
# softmax
attention_scores = scores.softmax(dim=-1) # b h i j (i: number of queries, j: number of keys)
# dot product with V
out = torch.einsum("... i j, ... j d -> ... i d", attention_scores, values)
out = rearrange(out, "b h n d -> b n (h d)", h=self.num_heads)
out = self.to_out(out) + residual_hidden_states
residual_out = out
out = self.feed_forward(out)
return out + residual_out
class Resampler(nn.Module):
def __init__(
self,
hidden_size: int = 768,
image_hidden_size: int = 1024,
final_hidden_size: int = 4096,
num_heads: int = 12,
intermediate_size: int = None,
num_queries: int = 128,
num_layers: int = 3,
initializer_range: float = 0.02
):
super().__init__()
self.resampler_blocks = nn.ModuleList(
[
ResamplerBlock(
hidden_size, image_hidden_size, num_heads, intermediate_size
) for _ in range(num_layers)
]
)
self.queries = nn.Parameter(torch.randn(num_queries, hidden_size))
self.post_norm = nn.LayerNorm(hidden_size)
self.final_proj = nn.Linear(hidden_size, final_hidden_size, bias=False)
# self.initializer_range = initializer_range
# for module in self.modules():
# if isinstance(module, (nn.Linear, nn.LayerNorm, nn.Conv2d)):
# self._init_weights(module)
#
# def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
# """Initialize the weights"""
# if isinstance(module, (nn.Linear, nn.Conv2d)):
# # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# # `trunc_normal_cpu` not implemented in `half` issues
# module.weight.data = nn.init.trunc_normal_(
# module.weight.data.to(torch.float32), mean=0.0, std=self.initializer_range
# ).to(module.weight.dtype)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.LayerNorm):
# module.bias.data.zero_()
# module.weight.data.fill_(1.0)
def forward(self, image_hidden_states: torch.Tensor) -> torch.Tensor:
b = image_hidden_states.size(0)
queries = repeat(self.queries, 'n d -> b n d', b=b)
for resampler_block in self.resampler_blocks:
queries = resampler_block(queries, image_hidden_states)
# post norm
queries = self.post_norm(queries)
return self.final_proj(queries)
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
if projector_type == 'resampler':
hidden_size = getattr(config, 'resampler_hidden_size', 768)
image_hidden_size = config.mm_hidden_size
num_queries = getattr(config, 'num_queries', 128)
final_hidden_size = config.hidden_size
num_heads = 12
if hidden_size == 512:
num_heads = 8
num_layers = getattr(config, 'num_resampler_layers', 3)
initializer_range = getattr(config, 'initializer_range', 0.02)
print(
f"resampler config: resampler hidden size: {hidden_size}, num_queries: {num_queries}, "
f"num_resampler_layers: {num_layers}"
)
return Resampler(
hidden_size=hidden_size,
image_hidden_size=image_hidden_size,
num_queries=num_queries,
final_hidden_size=final_hidden_size,
num_layers=num_layers,
num_heads=num_heads,
initializer_range=initializer_range
)
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
mlp = nn.Sequential(*modules)
if getattr(config, 'load_moe_mm_projector', False):
from deepspeed.moe.layer import MoE
mlp = MoE(
config.mm_hidden_size,
expert=mlp,
num_experts=4,
ep_size=1,
k=2,
capacity_factor=1.,
eval_capacity_factor=1.,
min_capacity=4,
use_residual=False,
)
def moe_forward_wrapper(forward_func):
return lambda *args, **kwargs: forward_func(*args, **kwargs)[0]
mlp.forward = moe_forward_wrapper(mlp.forward)
return mlp
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')