m7n's picture
Update app.py
4f40d11 verified
raw
history blame
8.18 kB
import os
os.system("pip uninstall -y gradio")
os.system("pip install --upgrade gradio")
os.system("pip install datamapplot==0.3.0")
os.system("pip install numba==0.59.1")
os.system("pip install umap-learn==0.5.6")
os.system("pip install pynndescent==0.5.12")
import spaces
from pathlib import Path
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import gradio as gr
from datetime import datetime
import sys
gr.set_static_paths(paths=["static/"])
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)
# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# Gradio stuff
import datamapplot
import numpy as np
import requests
import io
import pandas as pd
from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers, Funders
from itertools import chain
from compress_pickle import load, dump
from transformers import AutoTokenizer
from adapters import AutoAdapterModel
import torch
from tqdm import tqdm
from numba.typed import List
import pickle
import pynndescent
import umap
def query_records(search_term):
def invert_abstract(inv_index):
if inv_index is not None:
l_inv = [(w, p) for w, pos in inv_index.items() for p in pos]
return " ".join(map(lambda x: x[0], sorted(l_inv, key=lambda x: x[1])))
else:
return ' '
def get_pub(x):
try:
source = x['source']['display_name']
if source not in ['parsed_publication','Deleted Journal']:
return source
else:
return ' '
except:
return ' '
# Fetch records based on the search term
query = Works().search_filter(abstract=search_term)
records = []
for record in chain(*query.paginate(per_page=200)):
records.append(record)
records_df = pd.DataFrame(records)
records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']]
return records_df
################# Setting up the model for specter2 embeddings ###################
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda")
print(f"Using device: {device}")
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_aug2023refresh_base')
model = AutoAdapterModel.from_pretrained('allenai/specter2_aug2023refresh_base')
@spaces.GPU(duration=120)
def create_embeddings(texts_to_embedd):
# Set up the device
print(len(texts_to_embedd))
# Load the proximity adapter and activate it
model.load_adapter("allenai/specter2_aug2023refresh", source="hf", load_as="proximity", set_active=True)
model.set_active_adapters("proximity")
model.to(device)
def batch_generator(data, batch_size):
"""Yield consecutive batches of data."""
for i in range(0, len(data), batch_size):
yield data[i:i + batch_size]
def encode_texts(texts, device, batch_size=16):
"""Process texts in batches and return their embeddings."""
model.eval()
with torch.no_grad():
all_embeddings = []
count = 0
for batch in tqdm(batch_generator(texts, batch_size)):
inputs = tokenizer(batch, padding=True, truncation=True, return_tensors="pt", max_length=512).to(device)
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :] # Taking the [CLS] token representation
all_embeddings.append(embeddings.cpu()) # Move to CPU to free GPU memory
#torch.mps.empty_cache() # Clear cache to free up memory
if count == 100:
torch.mps.empty_cache()
count = 0
count +=1
all_embeddings = torch.cat(all_embeddings, dim=0)
return all_embeddings
# Concatenate title and abstract
embeddings = encode_texts(texts_to_embedd, device, batch_size=32).cpu().numpy() # Process texts in batches of 10
return embeddings
def predict(text_input, progress=gr.Progress()):
progress(0.1, desc="Getting queried data...")
# get data.
records_df = query_records(text_input)
print(records_df)
progress(0.2, desc="Embedding Data...")
texts_to_embedd = [title + tokenizer.sep_token + publication + tokenizer.sep_token + abstract for title, publication, abstract in zip(records_df['title'],records_df['parsed_publication'], records_df['abstract'])]
embeddings = create_embeddings(texts_to_embedd)
print(embeddings)
progress(0.3, desc="Project into UMAP-embedding...")
umap_embeddings = mapper.transform(embeddings)
records_df[['x','y']] = umap_embeddings
basedata_df['color'] = '#ced4d211'
records_df['color'] = '#a81a26'
progress(0.4, desc="Set up data...")
stacked_df = pd.concat([records_df, basedata_df], axis=0, ignore_index=True)
stacked_df = stacked_df.fillna("Unlabelled")
stacked_df = stacked_df.reset_index(drop=True)
print(stacked_df)
file_name = f"{datetime.utcnow().strftime('%s')}.html"
file_path = static_dir / file_name
print(file_path)
#
progress(0.5, desc="Plotting...")
plot = datamapplot.create_interactive_plot(
stacked_df[['x','y']].values,
np.array(stacked_df['cluster_1_labels']),np.array(stacked_df['cluster_2_labels']),np.array(stacked_df['cluster_3_labels']),
hover_text=[str(ix) + ', ' + str(row['parsed_publication']) + str(row['title']) for ix, row in stacked_df.iterrows()],
font_family="Roboto Condensed",marker_color_array=stacked_df['color']
)
progress(0.6, desc="Saving plot...")
plot.save(file_path)
progress(1.0, desc="Done!")
iframe = f"""<iframe src="/static/{file_name}" width="100%" height="500px"></iframe>"""
link = f'<a href="/static/{file_name}" target="_blank">{file_name}</a>'
return link, iframe
with gr.Blocks() as block:
gr.Markdown("""
## Gradio + FastAPI + Static Server
This is a demo of how to use Gradio with FastAPI and a static server.
The Gradio app generates dynamic HTML files and stores them in a static directory. FastAPI serves the static files.
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Name")
markdown = gr.Markdown(label="Output Box")
new_btn = gr.Button("New")
with gr.Column():
html = gr.HTML(label="HTML preview", show_label=True)
new_btn.click(fn=predict, inputs=[text_input], outputs=[markdown, html])
def setup_basemap_data():
# get data.
print("getting basemap data...")
basedata_df = load("100k_filtered_OA_sample_cluster_and_positions.bz")
print(basedata_df)
return basedata_df
def setup_mapper():
print("getting mapper...")
params_new = pickle.load(open('umap_mapper_300k_random_OA_specter_2_params.pkl', 'rb'))
print("setting up mapper...")
mapper = umap.UMAP()
# Filter out 'target_backend' from umap_params if it exists
umap_params = {k: v for k, v in params_new.get('umap_params', {}).items() if k != 'target_backend'}
mapper.set_params(**umap_params)
for attr, value in params_new.get('umap_attributes', {}).items():
if attr != 'embedding_':
setattr(mapper, attr, value)
if 'embedding_' in params_new.get('umap_attributes', {}):
mapper.embedding_ = List(params_new['umap_attributes']['embedding_'])
return mapper
basedata_df = setup_basemap_data()
mapper = setup_mapper()
# mount Gradio app to FastAPI app
app = gr.mount_gradio_app(app, block, path="/")
# serve the app
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# run the app with
# python app.py
# or
# uvicorn "app:app" --host "0.0.0.0" --port 7860 --reload