Spaces:
Sleeping
Sleeping
Update my_model/tabs/run_inference.py
Browse files- my_model/tabs/run_inference.py +10 -12
my_model/tabs/run_inference.py
CHANGED
@@ -33,7 +33,7 @@ class InferenceRunner(StateManager):
|
|
33 |
# self.initialize_state()
|
34 |
|
35 |
|
36 |
-
def answer_question(self, caption, detected_objects_str, question
|
37 |
"""
|
38 |
Generates an answer to a given question based on the image's caption and detected objects.
|
39 |
|
@@ -41,27 +41,25 @@ class InferenceRunner(StateManager):
|
|
41 |
caption (str): The caption generated for the image.
|
42 |
detected_objects_str (str): String representation of objects detected in the image.
|
43 |
question (str): The user's question about the image.
|
44 |
-
|
45 |
|
46 |
Returns:
|
47 |
str: The generated answer to the question.
|
48 |
"""
|
49 |
free_gpu_resources()
|
50 |
-
answer =
|
51 |
prompt_length = model.current_prompt_length
|
52 |
free_gpu_resources()
|
53 |
return answer, prompt_length
|
54 |
|
55 |
|
56 |
-
def image_qa_app(self
|
57 |
"""
|
58 |
Main application interface for image-based question answering. It handles displaying
|
59 |
of sample images, uploading of new images, and facilitates the QA process.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
kbvqa (KBVQA): The loaded KBVQA model used for image analysis and question answering.
|
63 |
"""
|
64 |
|
|
|
65 |
# Display sample images as clickable thumbnails
|
66 |
self.col1.write("Choose from sample images:")
|
67 |
cols = self.col1.columns(len(config.SAMPLE_IMAGES))
|
@@ -71,12 +69,12 @@ class InferenceRunner(StateManager):
|
|
71 |
image_for_display = self.resize_image(sample_image_path, 80, 80)
|
72 |
st.image(image_for_display)
|
73 |
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
|
74 |
-
self.process_new_image(sample_image_path, image
|
75 |
|
76 |
# Image uploader
|
77 |
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
78 |
if uploaded_image is not None:
|
79 |
-
self.process_new_image(uploaded_image.name, Image.open(uploaded_image)
|
80 |
|
81 |
# Display and interact with each uploaded/selected image
|
82 |
self.display_session_state()
|
@@ -91,7 +89,7 @@ class InferenceRunner(StateManager):
|
|
91 |
with nested_col22:
|
92 |
if st.button('Analyze Image', key=f'analyze_{image_key}', on_click=self.disable_widgets, disabled=self.is_widget_disabled):
|
93 |
|
94 |
-
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image']
|
95 |
self.update_image_data(image_key, caption, detected_objects_str, True)
|
96 |
st.session_state['loading_in_progress'] = False
|
97 |
|
@@ -121,7 +119,7 @@ class InferenceRunner(StateManager):
|
|
121 |
else:
|
122 |
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
|
123 |
|
124 |
-
answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question
|
125 |
st.session_state['loading_in_progress'] = False
|
126 |
self.add_to_qa_history(image_key, question, answer, prompt_length)
|
127 |
|
@@ -198,6 +196,6 @@ class InferenceRunner(StateManager):
|
|
198 |
if self.is_model_loaded:
|
199 |
free_gpu_resources()
|
200 |
st.session_state['loading_in_progress'] = False
|
201 |
-
self.image_qa_app(
|
202 |
|
203 |
|
|
|
33 |
# self.initialize_state()
|
34 |
|
35 |
|
36 |
+
def answer_question(self, caption, detected_objects_str, question):
|
37 |
"""
|
38 |
Generates an answer to a given question based on the image's caption and detected objects.
|
39 |
|
|
|
41 |
caption (str): The caption generated for the image.
|
42 |
detected_objects_str (str): String representation of objects detected in the image.
|
43 |
question (str): The user's question about the image.
|
44 |
+
|
45 |
|
46 |
Returns:
|
47 |
str: The generated answer to the question.
|
48 |
"""
|
49 |
free_gpu_resources()
|
50 |
+
answer = self.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
|
51 |
prompt_length = model.current_prompt_length
|
52 |
free_gpu_resources()
|
53 |
return answer, prompt_length
|
54 |
|
55 |
|
56 |
+
def image_qa_app(self):
|
57 |
"""
|
58 |
Main application interface for image-based question answering. It handles displaying
|
59 |
of sample images, uploading of new images, and facilitates the QA process.
|
|
|
|
|
|
|
60 |
"""
|
61 |
|
62 |
+
|
63 |
# Display sample images as clickable thumbnails
|
64 |
self.col1.write("Choose from sample images:")
|
65 |
cols = self.col1.columns(len(config.SAMPLE_IMAGES))
|
|
|
69 |
image_for_display = self.resize_image(sample_image_path, 80, 80)
|
70 |
st.image(image_for_display)
|
71 |
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
|
72 |
+
self.process_new_image(sample_image_path, image)
|
73 |
|
74 |
# Image uploader
|
75 |
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
76 |
if uploaded_image is not None:
|
77 |
+
self.process_new_image(uploaded_image.name, Image.open(uploaded_image))
|
78 |
|
79 |
# Display and interact with each uploaded/selected image
|
80 |
self.display_session_state()
|
|
|
89 |
with nested_col22:
|
90 |
if st.button('Analyze Image', key=f'analyze_{image_key}', on_click=self.disable_widgets, disabled=self.is_widget_disabled):
|
91 |
|
92 |
+
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
|
93 |
self.update_image_data(image_key, caption, detected_objects_str, True)
|
94 |
st.session_state['loading_in_progress'] = False
|
95 |
|
|
|
119 |
else:
|
120 |
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
|
121 |
|
122 |
+
answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question)
|
123 |
st.session_state['loading_in_progress'] = False
|
124 |
self.add_to_qa_history(image_key, question, answer, prompt_length)
|
125 |
|
|
|
196 |
if self.is_model_loaded:
|
197 |
free_gpu_resources()
|
198 |
st.session_state['loading_in_progress'] = False
|
199 |
+
self.image_qa_app()
|
200 |
|
201 |
|