m7mdal7aj commited on
Commit
0fa8d68
·
verified ·
1 Parent(s): 40e0ea9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -66
app.py CHANGED
@@ -10,22 +10,7 @@ from my_model.captioner.image_captioning import get_caption
10
  from my_model.utilities import free_gpu_resources
11
 
12
 
13
- def perform_object_detection(image, model_name, threshold=0.2):
14
- """
15
- Perform object detection on the given image using the specified model and threshold.
16
- Args:
17
- image (PIL.Image): The image on which to perform object detection.
18
- model_name (str): The name of the object detection model to use.
19
- threshold (float): The threshold for object detection.
20
- Returns:
21
- PIL.Image, str: The image with drawn bounding boxes and a string of detected objects.
22
- """
23
-
24
- processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold)
25
-
26
- return processed_image, detected_objects
27
-
28
-
29
  # Placeholder for undefined functions
30
  def load_caption_model():
31
  st.write("Placeholder for load_caption_model function")
@@ -34,9 +19,6 @@ def load_caption_model():
34
  def answer_question(image, question, model, processor):
35
  return "Placeholder answer for the question"
36
 
37
- def detect_and_draw_objects(image, model_name, threshold):
38
- perform_object_detection()
39
-
40
  def get_caption(image):
41
  return "Generated caption for the image"
42
 
@@ -44,50 +26,12 @@ def free_gpu_resources():
44
  pass
45
 
46
  # Sample images (assuming these are paths to your sample images)
47
- sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", "Files/sample7.jpg"]
48
-
49
- # Main function
50
- def main():
51
- st.sidebar.title("Navigation")
52
- selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"])
53
-
54
- if selection == "Home":
55
- st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
56
- st.write("Home page content goes here...")
57
-
58
- elif selection == "Dissertation Report":
59
- st.title("Dissertation Report")
60
- st.write("Click the link below to view the PDF.")
61
- # Example to display a link to a PDF
62
- st.download_button(
63
- label="Download PDF",
64
- data=open("Files/Dissertation Report.pdf", "rb"),
65
- file_name="example.pdf",
66
- mime="application/octet-stream"
67
- )
68
-
69
-
70
- elif selection == "Evaluation Results":
71
- st.title("Evaluation Results")
72
- st.write("This is a Place Holder until the contents are uploaded.")
73
-
74
-
75
- elif selection == "Dataset Analysis":
76
- st.title("OK-VQA Dataset Analysis")
77
- st.write("This is a Place Holder until the contents are uploaded.")
78
-
79
-
80
- elif selection == "Run Inference":
81
- run_inference()
82
-
83
- elif selection == "Object Detection":
84
- run_object_detection()
85
-
86
- # Other display functions...
87
 
88
  def run_inference():
89
  st.title("Run Inference")
90
- # Image-based Q&A and Object Detection functionality
91
  image_qa_and_object_detection()
92
 
93
  def image_qa_and_object_detection():
@@ -109,12 +53,8 @@ def image_qa_app():
109
  st.session_state['images_qa_history'] = []
110
  st.experimental_rerun()
111
 
112
-
113
  # Image uploader
114
  uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
115
- if uploaded_image is not None:
116
- image = Image.open(uploaded_image)
117
- process_uploaded_image(image)
118
 
119
  # Display sample images
120
  st.write("Or choose from sample images:")
@@ -123,16 +63,48 @@ def image_qa_app():
123
  uploaded_image = Image.open(sample_image_path)
124
  process_uploaded_image(uploaded_image)
125
 
 
 
 
 
126
  def process_uploaded_image(image):
127
  current_image_key = image.filename # Use image filename as a unique key
128
- # ... rest of the image processing code ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  # Object Detection App
131
  def object_detection_app():
132
  # ... Implement your code for object detection ...
133
  pass
134
 
135
- # Other functions...
136
 
137
  if __name__ == "__main__":
138
  main()
 
10
  from my_model.utilities import free_gpu_resources
11
 
12
 
13
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Placeholder for undefined functions
15
  def load_caption_model():
16
  st.write("Placeholder for load_caption_model function")
 
19
  def answer_question(image, question, model, processor):
20
  return "Placeholder answer for the question"
21
 
 
 
 
22
  def get_caption(image):
23
  return "Generated caption for the image"
24
 
 
26
  pass
27
 
28
  # Sample images (assuming these are paths to your sample images)
29
+ sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
30
+ "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
31
+ "Files/sample7.jpg"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  def run_inference():
34
  st.title("Run Inference")
 
35
  image_qa_and_object_detection()
36
 
37
  def image_qa_and_object_detection():
 
53
  st.session_state['images_qa_history'] = []
54
  st.experimental_rerun()
55
 
 
56
  # Image uploader
57
  uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
 
 
 
58
 
59
  # Display sample images
60
  st.write("Or choose from sample images:")
 
63
  uploaded_image = Image.open(sample_image_path)
64
  process_uploaded_image(uploaded_image)
65
 
66
+ if uploaded_image is not None:
67
+ image = Image.open(uploaded_image)
68
+ process_uploaded_image(image)
69
+
70
  def process_uploaded_image(image):
71
  current_image_key = image.filename # Use image filename as a unique key
72
+ # Check if the image is already in the history
73
+ if not any(info['image_key'] == current_image_key for info in st.session_state['images_qa_history']):
74
+ st.session_state['images_qa_history'].append({
75
+ 'image_key': current_image_key,
76
+ 'image': image,
77
+ 'qa_history': []
78
+ })
79
+
80
+ # Display all images and their Q&A histories
81
+ for image_info in st.session_state['images_qa_history']:
82
+ st.image(image_info['image'], caption='Uploaded Image.', use_column_width=True)
83
+ for q, a in image_info['qa_history']:
84
+ st.text(f"Q: {q}\nA: {a}\n")
85
+
86
+ # If the current image is being processed
87
+ if image_info['image_key'] == current_image_key:
88
+ # Unique keys for each widget
89
+ question_key = f"question_{current_image_key}"
90
+ button_key = f"button_{current_image_key}"
91
+
92
+ # Question input for the current image
93
+ question = st.text_input("Ask a question about this image:", key=question_key)
94
+
95
+ # Get Answer button for the current image
96
+ if st.button('Get Answer', key=button_key):
97
+ # Process the image and question
98
+ answer = answer_question(image_info['image'], question, None, None) # Implement this function
99
+ image_info['qa_history'].append((question, answer))
100
+ st.experimental_rerun() # Rerun to update the display
101
 
102
  # Object Detection App
103
  def object_detection_app():
104
  # ... Implement your code for object detection ...
105
  pass
106
 
107
+ # Main function and other display functions...
108
 
109
  if __name__ == "__main__":
110
  main()