Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
def load_model(): | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto") | |
return model, processor | |
def answer_question(image, question, model, processor): | |
image = Image.open(image).convert('RGB') | |
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16) | |
out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1) | |
answer = processor.decode(out[0], skip_special_tokens=True).strip() | |
return answer | |
st.title("Image Question Answering") | |
# File uploader for the image | |
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
# Text input for the question | |
question = st.text_input("Enter your question about the image:") | |
if st.button("Get Answer"): | |
if image is not None and question: | |
# Display the image | |
st.image(image, use_column_width=True) | |
# Get and display the answer | |
model, processor = load_caption_model() | |
answer = answer_question(image, question, model, processor) | |
st.write(answer) | |
else: | |
st.write("Please upload an image and enter a question.") |