KB-VQA / my_model /tabs /run_inference.py
m7mdal7aj's picture
Update my_model/tabs/run_inference.py
40d77a8 verified
raw
history blame
8.87 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
import time
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
from my_model.config import inference_config as config
class InferenceRunner(StateManager):
def __init__(self):
super().__init__()
self.initialize_state()
self.sample_images = config.SAMPLE_IMAGES
def answer_question(self, caption, detected_objects_str, question, model):
free_gpu_resources()
answer = model.generate_answer(question, caption, detected_objects_str)
free_gpu_resources()
return answer
def image_qa_app(self, kbvqa):
# Display sample images as clickable thumbnails
self.col1.write("Choose from sample images:")
cols = self.col1.columns(len(self.sample_images))
st.write('loading in prog?', st.session_state['loading_in_progress'])
for idx, sample_image_path in enumerate(self.sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
image_for_display = self.resize_image(sample_image_path, 80, 80)
st.image(image_for_display)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
self.process_new_image(sample_image_path, image, kbvqa)
st.write('loading in prog?',st.session_state['loading_in_progress'])
# Image uploader
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
st.write(st.session_state['loading_in_progress'])
if uploaded_image is not None:
self.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
with self.col2:
for image_key, image_data in self.get_images_data().items():
with st.container():
nested_col21, nested_col22 = st.columns([0.65, 0.35])
image_for_display = self.resize_image(image_data['image'], 600)
nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
if not image_data['analysis_done']:
nested_col22.text("Please click 'Analyze Image'..")
with nested_col22:
if st.button('Analyze Image', key=f'analyze_{image_key}', on_click=self.disable_widgets, disabled=self.is_widget_disabled):
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'], kbvqa)
self.update_image_data(image_key, caption, detected_objects_str, True)
st.session_state['loading_in_progress'] = False
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
st.session_state['loading_in_progress'] = False
sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
selected_question = nested_col22.selectbox(
"Select a sample question or type your own:",
["Custom question..."] + sample_questions,
key=f'sample_question_{image_key}')
# Text input for custom question
custom_question = nested_col22.text_input(
"Or ask your own question:",
key=f'custom_question_{image_key}')
# Use the selected sample question or the custom question
question = custom_question if selected_question == "Custom question..." else selected_question
if not question:
nested_col22.warning("Please select or enter a question.")
else:
if question in [q for q, _ in qa_history]:
nested_col22.warning("This question has already been answered.")
else:
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
answer = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
st.session_state['loading_in_progress'] = False
self.add_to_qa_history(image_key, question, answer)
# Display Q&A history for each image
for num, (q, a) in enumerate(qa_history):
nested_col22.text(f"Q{num+1}: {q}\nA{num+1}: {a}\n")
def display_message(self, message, warning=False, write=False, text=False):
pass
def run_inference(self):
self.set_up_widgets()
load_fine_tuned_model = False
fine_tuned_model_already_loaded = False
reload_detection_model = False
force_reload_full_model = False
st.session_state['settings_changed'] = self.has_state_changed()
if st.session_state['settings_changed']:
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
st.session_state.button_label = "Reload Model" if self.is_model_loaded() and self.settings_changed else "Load Model"
with self.col1:
if st.session_state.method == "Fine-Tuned Model":
with st.container():
nested_col11, nested_col12 = st.columns([0.5, 0.5])
if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets, disabled=self.is_widget_disabled):
if st.session_state.button_label == "Load Model":
if self.is_model_loaded():
free_gpu_resources()
fine_tuned_model_already_loaded = True
else:
load_fine_tuned_model = True
else:
reload_detection_model = True
if nested_col12.button("Force Reload", on_click=self.disable_widgets, disabled=self.is_widget_disabled):
force_reload_full_model = True
if load_fine_tuned_model:
t1=time.time()
free_gpu_resources()
self.load_model()
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
st.session_state['loading_in_progress'] = False
elif fine_tuned_model_already_loaded:
free_gpu_resources()
self.col1.text("Model already loaded and no settings were changed:)")
st.session_state['loading_in_progress'] = False
elif reload_detection_model:
free_gpu_resources()
self.reload_detection_model()
st.session_state['loading_in_progress'] = False
elif force_reload_full_model:
free_gpu_resources()
t1=time.time()
self.force_reload_model()
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
st.session_state['loading_in_progress'] = False
st.session_state['model_loaded'] = True
elif st.session_state.method == "In-Context Learning (n-shots)":
self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.')
st.session_state['loading_in_progress'] = False
if self.is_model_loaded():
free_gpu_resources()
st.session_state['loading_in_progress'] = False
self.image_qa_app(self.get_model())
st.write('load success', 'loading in prog?', st.session_state['loading_in_progress'])