m7mdal7aj commited on
Commit
af54c38
1 Parent(s): a0d48c1

Update my_model/results/demo.py

Browse files
Files changed (1) hide show
  1. my_model/results/demo.py +9 -2
my_model/results/demo.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  import altair as alt
3
  from my_model.config import evaluation_config as config
4
  import streamlit as st
@@ -40,6 +41,7 @@ class ResultDemonstrator:
40
  """
41
  st.dataframe(data)
42
 
 
43
  def calculate_and_append_data(self, data_list: list, score_column: str, model_config: str) -> None:
44
  """
45
  Calculates mean scores by category and appends them to the data list.
@@ -57,7 +59,8 @@ class ResultDemonstrator:
57
  "Configuration": model_config,
58
  "Mean Value": round(mean_value * 100, 2)
59
  })
60
-
 
61
  def display_ablation_results_per_question_category(self) -> None:
62
  """Displays ablation results per question category for each model configuration."""
63
 
@@ -86,7 +89,8 @@ class ResultDemonstrator:
86
 
87
  with st.expander(f"{score_type.upper()} Scores per Question Category and Model Configuration"):
88
  self.display_table(results_df)
89
-
 
90
  def display_main_results(self) -> None:
91
  """Displays the main model results from the Scores sheet, these are displayed from the file directly."""
92
  main_scores = pd.read_excel(config.EVALUATION_DATA_PATH, sheet_name="Scores", index_col=0)
@@ -94,6 +98,7 @@ class ResultDemonstrator:
94
  main_scores.reset_index()
95
  self.display_table(main_scores)
96
 
 
97
  def plot_token_count_vs_scores(self, conf: str, model_name: str, score_name: str = 'VQA Score') -> None:
98
  """
99
  Plots an interactive scatter plot comparing token count to VQA or EM scores using Altair.
@@ -188,6 +193,8 @@ class ResultDemonstrator:
188
  return 'color: orange;'
189
  return 'color: black;'
190
 
 
 
191
  def show_samples(self, num_samples: int = 3) -> None:
192
  """
193
  Displays random sample images and their associated models answers and evaluations.
 
1
  import os
2
+ from my_model.utilities.gen_utilities import log_function_call
3
  import altair as alt
4
  from my_model.config import evaluation_config as config
5
  import streamlit as st
 
41
  """
42
  st.dataframe(data)
43
 
44
+ @log_function_call
45
  def calculate_and_append_data(self, data_list: list, score_column: str, model_config: str) -> None:
46
  """
47
  Calculates mean scores by category and appends them to the data list.
 
59
  "Configuration": model_config,
60
  "Mean Value": round(mean_value * 100, 2)
61
  })
62
+
63
+ @log_function_call
64
  def display_ablation_results_per_question_category(self) -> None:
65
  """Displays ablation results per question category for each model configuration."""
66
 
 
89
 
90
  with st.expander(f"{score_type.upper()} Scores per Question Category and Model Configuration"):
91
  self.display_table(results_df)
92
+
93
+ @log_function_call
94
  def display_main_results(self) -> None:
95
  """Displays the main model results from the Scores sheet, these are displayed from the file directly."""
96
  main_scores = pd.read_excel(config.EVALUATION_DATA_PATH, sheet_name="Scores", index_col=0)
 
98
  main_scores.reset_index()
99
  self.display_table(main_scores)
100
 
101
+ @log_function_call
102
  def plot_token_count_vs_scores(self, conf: str, model_name: str, score_name: str = 'VQA Score') -> None:
103
  """
104
  Plots an interactive scatter plot comparing token count to VQA or EM scores using Altair.
 
193
  return 'color: orange;'
194
  return 'color: black;'
195
 
196
+
197
+ @log_function_call
198
  def show_samples(self, num_samples: int = 3) -> None:
199
  """
200
  Displays random sample images and their associated models answers and evaluations.