Update app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,14 @@ import torch.nn as nn
|
|
8 |
from my_model.object_detection import detect_and_draw_objects
|
9 |
from my_model.captioner.image_captioning import get_caption
|
10 |
from my_model.utilities import free_gpu_resources
|
|
|
11 |
|
12 |
|
13 |
|
14 |
-
|
15 |
-
def load_caption_model():
|
16 |
-
st.write("Placeholder for load_caption_model function")
|
17 |
-
return None, None
|
18 |
|
19 |
-
|
20 |
-
return
|
21 |
|
22 |
def get_caption(image):
|
23 |
return "Generated caption for the image"
|
@@ -32,18 +30,18 @@ sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
|
|
32 |
|
33 |
def run_inference():
|
34 |
st.title("Run Inference")
|
35 |
-
image_qa_and_object_detection()
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
|
|
47 |
# Initialize session state for storing the current image and its Q&A history
|
48 |
if 'current_image' not in st.session_state:
|
49 |
st.session_state['current_image'] = None
|
@@ -76,7 +74,7 @@ def image_qa_app():
|
|
76 |
# Get Answer button
|
77 |
if st.button('Get Answer'):
|
78 |
# Process the question
|
79 |
-
answer = answer_question(st.session_state['current_image'], question)
|
80 |
st.session_state['qa_history'].append((question, answer))
|
81 |
|
82 |
# Display all Q&A
|
@@ -84,11 +82,6 @@ def image_qa_app():
|
|
84 |
st.text(f"Q: {q}\nA: {a}\n")
|
85 |
|
86 |
|
87 |
-
# Object Detection App
|
88 |
-
def object_detection_app():
|
89 |
-
# ... Implement your code for object detection ...
|
90 |
-
pass
|
91 |
-
|
92 |
# Main function
|
93 |
def main():
|
94 |
st.sidebar.title("Navigation")
|
|
|
8 |
from my_model.object_detection import detect_and_draw_objects
|
9 |
from my_model.captioner.image_captioning import get_caption
|
10 |
from my_model.utilities import free_gpu_resources
|
11 |
+
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
|
12 |
|
13 |
|
14 |
|
15 |
+
def answer_question(image, question, model):
|
|
|
|
|
|
|
16 |
|
17 |
+
answer = model.generate_answer(question, image):
|
18 |
+
return answer
|
19 |
|
20 |
def get_caption(image):
|
21 |
return "Generated caption for the image"
|
|
|
30 |
|
31 |
def run_inference():
|
32 |
st.title("Run Inference")
|
|
|
33 |
|
34 |
+
# Button to load KBVQA models
|
35 |
+
if st.button('Load KBVQA Models'):
|
36 |
+
# Call the function to load models and show progress
|
37 |
+
kbvqa = prepare_kbvqa_model(your_detection_model) # Replace with your actual detection model
|
38 |
|
39 |
+
if kbvqa:
|
40 |
+
st.write("Model is ready for inference."
|
41 |
+
image_qa_app(kbvqa)
|
42 |
|
43 |
+
|
44 |
+
def image_qa_app(kbvqa):
|
45 |
# Initialize session state for storing the current image and its Q&A history
|
46 |
if 'current_image' not in st.session_state:
|
47 |
st.session_state['current_image'] = None
|
|
|
74 |
# Get Answer button
|
75 |
if st.button('Get Answer'):
|
76 |
# Process the question
|
77 |
+
answer = answer_question(st.session_state['current_image'], question, model=kbvqa)
|
78 |
st.session_state['qa_history'].append((question, answer))
|
79 |
|
80 |
# Display all Q&A
|
|
|
82 |
st.text(f"Q: {q}\nA: {a}\n")
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
85 |
# Main function
|
86 |
def main():
|
87 |
st.sidebar.title("Navigation")
|