Update README.md
Browse files
README.md
CHANGED
@@ -17,38 +17,38 @@ license: apache-2.0
|
|
17 |
KB-VQA
|
18 |
βββ Files: Various files required for the demo such as samples images, dissertation report ..etc.
|
19 |
βββ models
|
20 |
-
|
21 |
-
|
22 |
βββ my_model
|
23 |
-
|
24 |
-
|
25 |
β βββ LLAMA2
|
26 |
β β βββ LLAMA2_model.py: Used for loading LLaMA-2 model to be fine-tuned.
|
27 |
β βββ captioner
|
28 |
β β βββ image_captioning.py: Provides functionality for generating captions for images.
|
29 |
-
|
30 |
β β βββ object_detection.py: Used to detect objects in images using object detection models.
|
31 |
-
|
32 |
β β βββ fine_tuner.py: Main Fine-Tuning Script for LLaMa-2 Chat models.
|
33 |
β β βββ fine_tuning_data_handler.py: Handles and prepares the data for fine-tuning LLaMA-2 Chat models.
|
34 |
β β βββ fine_tuning_data
|
35 |
β β β βββfine_tuning_data_detic.csv: Fine-tuning data prepared by the prompt engineering module using DETIC detector.
|
36 |
β β β βββfine_tuning_data_yolov5.csv: Fine-tuning data prepared by the prompt engineering module using YOLOv5. detector.
|
37 |
-
|
38 |
β β βββ Demo_Images: Contains a pool of images used for the demo app.
|
39 |
β β βββ evaluation.py: Provides a comprehensive framework for evaluating the KB-VQA model.
|
40 |
β β βββ demo.py: Provides a comprehensive framework for visualizing and demonstrating the results of the KB-VQA evaluation.
|
41 |
β β βββ evaluation_results.xlsx : This file contains all the evaluation results based on the evaluation data.
|
42 |
-
|
43 |
β β βββ home.py: Displays an introduction to the application with brief background along with the demo tools description.
|
44 |
β β βββ results.py: Manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
45 |
β β βββ run_inference.py: Responsible for the 'run inference' tool to test and use the fine-tuned models.
|
46 |
β β βββ model_arch.py: Displays the model architecture and accompanying abstract and design details
|
47 |
β β βββ dataset_analysis.py: Provides tools for visualizing dataset analyses.
|
48 |
-
|
49 |
β β βββ ui_manager.py: Manages the user interface for the Streamlit application, handling the creation and navigation of various tabs.
|
50 |
β β βββ gen_utilities.py: Provides a collection of utility functions and classes commonly used across various parts
|
51 |
-
|
52 |
β β βββ kbvqa_config.py: Configuration parameters for the main KB-VQA model.
|
53 |
β β βββ LLAMA2_config.py: Configuration parameters for LLaMA-2 model.
|
54 |
β β βββ captioning_config.py : Configuration parameters for the captioning model (InstructBLIP).
|
|
|
17 |
KB-VQA
|
18 |
βββ Files: Various files required for the demo such as samples images, dissertation report ..etc.
|
19 |
βββ models
|
20 |
+
β βββ deformable-detr-detic: DETIC Object Detection Model.
|
21 |
+
β βββ yolov5: YOLOv5 Object Detection Model.baseline)
|
22 |
βββ my_model
|
23 |
+
β βββ KBVQA.py : This module is the central component for implementing the designed model architecture for the Knowledge-Based Visual Question Answering (KB-VQA) project.
|
24 |
+
β βββ state_manager.py: Manages the user interface and session state to facilitate the Run Inference tool of the Streamlit demo app.
|
25 |
β βββ LLAMA2
|
26 |
β β βββ LLAMA2_model.py: Used for loading LLaMA-2 model to be fine-tuned.
|
27 |
β βββ captioner
|
28 |
β β βββ image_captioning.py: Provides functionality for generating captions for images.
|
29 |
+
β βββ detector
|
30 |
β β βββ object_detection.py: Used to detect objects in images using object detection models.
|
31 |
+
β βββ fine_tuner
|
32 |
β β βββ fine_tuner.py: Main Fine-Tuning Script for LLaMa-2 Chat models.
|
33 |
β β βββ fine_tuning_data_handler.py: Handles and prepares the data for fine-tuning LLaMA-2 Chat models.
|
34 |
β β βββ fine_tuning_data
|
35 |
β β β βββfine_tuning_data_detic.csv: Fine-tuning data prepared by the prompt engineering module using DETIC detector.
|
36 |
β β β βββfine_tuning_data_yolov5.csv: Fine-tuning data prepared by the prompt engineering module using YOLOv5. detector.
|
37 |
+
β βββ results
|
38 |
β β βββ Demo_Images: Contains a pool of images used for the demo app.
|
39 |
β β βββ evaluation.py: Provides a comprehensive framework for evaluating the KB-VQA model.
|
40 |
β β βββ demo.py: Provides a comprehensive framework for visualizing and demonstrating the results of the KB-VQA evaluation.
|
41 |
β β βββ evaluation_results.xlsx : This file contains all the evaluation results based on the evaluation data.
|
42 |
+
β βββ tabs
|
43 |
β β βββ home.py: Displays an introduction to the application with brief background along with the demo tools description.
|
44 |
β β βββ results.py: Manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
45 |
β β βββ run_inference.py: Responsible for the 'run inference' tool to test and use the fine-tuned models.
|
46 |
β β βββ model_arch.py: Displays the model architecture and accompanying abstract and design details
|
47 |
β β βββ dataset_analysis.py: Provides tools for visualizing dataset analyses.
|
48 |
+
β βββ utilities
|
49 |
β β βββ ui_manager.py: Manages the user interface for the Streamlit application, handling the creation and navigation of various tabs.
|
50 |
β β βββ gen_utilities.py: Provides a collection of utility functions and classes commonly used across various parts
|
51 |
+
β βββ config (All Configurations files are kept separated and stored as ".py" for easy reading - this will change after the project submission.)
|
52 |
β β βββ kbvqa_config.py: Configuration parameters for the main KB-VQA model.
|
53 |
β β βββ LLAMA2_config.py: Configuration parameters for LLaMA-2 model.
|
54 |
β β βββ captioning_config.py : Configuration parameters for the captioning model (InstructBLIP).
|