Create demo.py
Browse files- my_model/results/demo.py +262 -0
my_model/results/demo.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import altair as alt
|
3 |
+
from my_model.config import evaluation_config as config
|
4 |
+
import streamlit as st
|
5 |
+
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
+
import random
|
8 |
+
|
9 |
+
|
10 |
+
class ResultDemonstrator:
|
11 |
+
"""
|
12 |
+
A class to demonstrate the results of the Knowledge-Based Visual Question Answering (KB-VQA) model.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
main_data (pd.DataFrame): Data loaded from an Excel file containing evaluation results.
|
16 |
+
sample_img_pool (list[str]): List of image file names available for demonstration.
|
17 |
+
model_names (list[str]): List of model names as defined in the configuration.
|
18 |
+
model_configs (list[str]): List of model configurations as defined in the configuration.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self) -> None:
|
22 |
+
"""
|
23 |
+
Initializes the ResultDemonstrator class by loading the data from an Excel file.
|
24 |
+
"""
|
25 |
+
# Load data
|
26 |
+
self.main_data = pd.read_excel(config.EVALUATION_DATA_PATH, sheet_name="Main Data")
|
27 |
+
self.sample_img_pool = list(os.listdir("Demo_Images"))
|
28 |
+
self.model_names = config.MODEL_NAMES
|
29 |
+
self.model_configs = config.MODEL_CONFIGURATIONS
|
30 |
+
|
31 |
+
@staticmethod
|
32 |
+
def display_table(data: pd.DataFrame) -> None:
|
33 |
+
"""
|
34 |
+
Displays a DataFrame using Streamlit's dataframe display function.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
data (pd.DataFrame): The data to display.
|
38 |
+
"""
|
39 |
+
st.dataframe(data)
|
40 |
+
|
41 |
+
def calculate_and_append_data(self, data_list: list, score_column: str, model_config: str) -> None:
|
42 |
+
"""
|
43 |
+
Calculates mean scores by category and appends them to the data list.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
data_list (list): List to append new data rows.
|
47 |
+
score_column (str): Name of the column to calculate mean scores for.
|
48 |
+
model_config (str): Configuration of the model.
|
49 |
+
"""
|
50 |
+
if score_column in self.main_data.columns:
|
51 |
+
category_means = self.main_data.groupby('question_category')[score_column].mean()
|
52 |
+
for category, mean_value in category_means.items():
|
53 |
+
data_list.append({
|
54 |
+
"Category": category,
|
55 |
+
"Configuration": model_config,
|
56 |
+
"Mean Value": round(mean_value * 100, 2)
|
57 |
+
})
|
58 |
+
|
59 |
+
def display_ablation_results_per_question_category(self) -> None:
|
60 |
+
"""Displays ablation results per question category for each model configuration."""
|
61 |
+
|
62 |
+
score_types = ['vqa', 'vqa_gpt4', 'em', 'em_gpt4']
|
63 |
+
data_lists = {key: [] for key in score_types}
|
64 |
+
column_names = {
|
65 |
+
'vqa': 'vqa_score_{config}',
|
66 |
+
'vqa_gpt4': 'gpt4_vqa_score_{config}',
|
67 |
+
'em': 'exact_match_score_{config}',
|
68 |
+
'em_gpt4': 'gpt4_em_score_{config}'
|
69 |
+
}
|
70 |
+
|
71 |
+
for model_name in config.MODEL_NAMES:
|
72 |
+
for conf in config.MODEL_CONFIGURATIONS:
|
73 |
+
model_config = f"{model_name}_{conf}"
|
74 |
+
for score_type, col_template in column_names.items():
|
75 |
+
self.calculate_and_append_data(data_lists[score_type],
|
76 |
+
col_template.format(config=model_config),
|
77 |
+
model_config)
|
78 |
+
|
79 |
+
# Process and display results for each score type
|
80 |
+
for score_type, data_list in data_lists.items():
|
81 |
+
df = pd.DataFrame(data_list)
|
82 |
+
results_df = df.pivot(index='Category', columns='Configuration', values='Mean Value').applymap(
|
83 |
+
lambda x: f"{x:.2f}%")
|
84 |
+
|
85 |
+
with st.expander(f"{score_type.upper()} Scores per Question Category and Model Configuration"):
|
86 |
+
self.display_table(results_df)
|
87 |
+
|
88 |
+
def display_main_results(self) -> None:
|
89 |
+
"""Displays the main model results from the Scores sheet, these are displayed from the file directly."""
|
90 |
+
main_scores = pd.read_excel('evaluation_results.xlsx', sheet_name="Scores", index_col=0)
|
91 |
+
st.markdown("### Main Model Results (Inclusive of Ablation Experiments)")
|
92 |
+
main_scores.reset_index()
|
93 |
+
self.display_table(main_scores)
|
94 |
+
|
95 |
+
def plot_token_count_vs_scores(self, conf: str, model_name: str, score_name: str = 'VQA Score') -> None:
|
96 |
+
"""
|
97 |
+
Plots an interactive scatter plot comparing token counts to VQA or EM scores using Altair.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
conf (str): The configuration name.
|
101 |
+
model_name (str): The name of the model.
|
102 |
+
score_name (str): The type of score to plot.
|
103 |
+
"""
|
104 |
+
|
105 |
+
# Construct the full model configuration name
|
106 |
+
model_configuration = f"{model_name}_{conf}"
|
107 |
+
|
108 |
+
# Determine the score column name and legend mapping based on the score type
|
109 |
+
if score_name == 'VQA Score':
|
110 |
+
|
111 |
+
score_column_name = f"vqa_score_{model_configuration}"
|
112 |
+
scores = self.main_data[score_column_name]
|
113 |
+
# Map scores to categories for the legend
|
114 |
+
legend_map = ['Correct' if score == 1 else 'Partially Correct' if round(score, 2) == 0.67 else 'Incorrect'
|
115 |
+
for score in scores]
|
116 |
+
|
117 |
+
color_scale = alt.Scale(domain=['Correct', 'Partially Correct', 'Incorrect'], range=['green', 'orange',
|
118 |
+
'red'])
|
119 |
+
else:
|
120 |
+
score_column_name = f"exact_match_score_{model_configuration}"
|
121 |
+
scores = self.main_data[score_column_name]
|
122 |
+
# Map scores to categories for the legend
|
123 |
+
legend_map = ['Correct' if score == 1 else 'Incorrect' for score in scores]
|
124 |
+
color_scale = alt.Scale(domain=['Correct', 'Incorrect'], range=['green', 'red'])
|
125 |
+
|
126 |
+
# Retrieve token counts from the data
|
127 |
+
token_counts = self.main_data[f'tokens_count_{conf}']
|
128 |
+
|
129 |
+
# Create a DataFrame for the scatter plot
|
130 |
+
scatter_data = pd.DataFrame({
|
131 |
+
'Index': range(len(token_counts)),
|
132 |
+
'Token Counts': token_counts,
|
133 |
+
score_name: legend_map
|
134 |
+
})
|
135 |
+
|
136 |
+
# Create an interactive scatter plot using Altair
|
137 |
+
chart = alt.Chart(scatter_data).mark_circle(
|
138 |
+
size=60,
|
139 |
+
fillOpacity=1, # Sets the fill opacity to maximum
|
140 |
+
strokeWidth=1, # Adjusts the border width making the circles bolder
|
141 |
+
stroke='black' # Sets the border color to black
|
142 |
+
).encode(
|
143 |
+
x=alt.X('Index', scale=alt.Scale(domain=[0, 1020])),
|
144 |
+
y=alt.Y('Token Counts', scale=alt.Scale(domain=[token_counts.min()-200, token_counts.max()+200])),
|
145 |
+
color=alt.Color(score_name, scale=color_scale, legend=alt.Legend(title=score_name)),
|
146 |
+
tooltip=['Index', 'Token Counts', score_name]
|
147 |
+
).interactive() # Enables zoom & pan
|
148 |
+
|
149 |
+
chart = chart.properties(
|
150 |
+
title={
|
151 |
+
"text": f"Token Counts vs {score_name} + Score + ({model_configuration})",
|
152 |
+
"color": "black", # Optional color
|
153 |
+
"fontSize": 20, # Optional font size
|
154 |
+
"anchor": "middle", # Optional anchor position
|
155 |
+
"offset": 0 # Optional offset
|
156 |
+
},
|
157 |
+
width=700,
|
158 |
+
height=500
|
159 |
+
)
|
160 |
+
|
161 |
+
# Display the interactive plot in Streamlit
|
162 |
+
st.altair_chart(chart, use_container_width=True)
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
def color_scores(value: float) -> str:
|
166 |
+
"""
|
167 |
+
Applies color coding based on the score value.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
value (float): The score value.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
str: CSS color style based on score value.
|
174 |
+
"""
|
175 |
+
|
176 |
+
try:
|
177 |
+
value = float(value) # Convert to float to handle numerical comparisons
|
178 |
+
except ValueError:
|
179 |
+
return 'color: black;' # Return black if value is not a number
|
180 |
+
|
181 |
+
if value == 1.0:
|
182 |
+
return 'color: green;'
|
183 |
+
elif value == 0.0:
|
184 |
+
return 'color: red;'
|
185 |
+
elif value == 0.67:
|
186 |
+
return 'color: orange;'
|
187 |
+
return 'color: black;'
|
188 |
+
|
189 |
+
def show_samples(self, num_samples: int = 3) -> None:
|
190 |
+
"""
|
191 |
+
Displays random sample images and their associated models answers and evaluations.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
num_samples (int): Number of sample images to display.
|
195 |
+
"""
|
196 |
+
|
197 |
+
# Sample images from the pool
|
198 |
+
target_imgs = random.sample(self.sample_img_pool, num_samples)
|
199 |
+
# Generate model configurations
|
200 |
+
model_configs = [f"{model_name}_{conf}" for model_name in self.model_names for conf in self.model_configs]
|
201 |
+
# Define column names for scores dynamically
|
202 |
+
column_names = {
|
203 |
+
'vqa': 'vqa_score_{config}',
|
204 |
+
'vqa_gpt4': 'gpt4_vqa_score_{config}',
|
205 |
+
'em': 'exact_match_score_{config}',
|
206 |
+
'em_gpt4': 'gpt4_em_score_{config}'
|
207 |
+
}
|
208 |
+
|
209 |
+
for img_filename in target_imgs:
|
210 |
+
image_data = self.main_data[self.main_data['image_filename'] == img_filename]
|
211 |
+
im = Image.open(f"demo/{img_filename}")
|
212 |
+
col1, col2 = st.columns([1, 2]) # to display images side by side with their data.
|
213 |
+
# Create a container for each image
|
214 |
+
with st.container():
|
215 |
+
st.write("-------------------------------")
|
216 |
+
with col1:
|
217 |
+
st.image(im, use_column_width=True)
|
218 |
+
with st.expander('Show Caption'):
|
219 |
+
st.text(image_data.iloc[0]['caption'])
|
220 |
+
with st.expander('Show DETIC Objects'):
|
221 |
+
st.text(image_data.iloc[0]['objects_detic_trimmed'])
|
222 |
+
with st.expander('Show YOLOv5 Objects'):
|
223 |
+
st.text(image_data.iloc[0]['objects_yolov5'])
|
224 |
+
with col2:
|
225 |
+
if not image_data.empty:
|
226 |
+
st.write(f"**Question: {image_data.iloc[0]['question']}**")
|
227 |
+
st.write(f"**Ground Truth Answers:** {image_data.iloc[0]['raw_answers']}")
|
228 |
+
|
229 |
+
# Initialize an empty DataFrame for summary data
|
230 |
+
summary_data = pd.DataFrame(
|
231 |
+
columns=['Model Configuration', 'Answer', 'VQA Score', 'VQA Score (GPT-4)', 'EM Score',
|
232 |
+
'EM Score (GPT-4)'])
|
233 |
+
|
234 |
+
for config in model_configs:
|
235 |
+
# Collect data for each model configuration
|
236 |
+
row_data = {
|
237 |
+
'Model Configuration': config,
|
238 |
+
'Answer': image_data.iloc[0].get(f'{config}', '-')
|
239 |
+
}
|
240 |
+
for score_type, score_template in column_names.items():
|
241 |
+
score_col = score_template.format(config=config)
|
242 |
+
score_value = image_data.iloc[0].get(score_col, '-')
|
243 |
+
if pd.notna(score_value) and not isinstance(score_value, str):
|
244 |
+
# Format score to two decimals if it's a valid number
|
245 |
+
score_value = f"{float(score_value):.2f}"
|
246 |
+
row_data[score_type.replace('_', ' ').title()] = score_value
|
247 |
+
|
248 |
+
# Convert row data to a DataFrame and concatenate it
|
249 |
+
rd = pd.DataFrame([row_data])
|
250 |
+
rd.columns = summary_data.columns
|
251 |
+
summary_data = pd.concat([summary_data, rd], axis=0, ignore_index=True)
|
252 |
+
|
253 |
+
# Apply styling to DataFrame for score coloring
|
254 |
+
styled_summary = summary_data.style.applymap(self.color_scores,
|
255 |
+
subset=['VQA Score', 'VQA Score (GPT-4)',
|
256 |
+
'EM Score',
|
257 |
+
'EM Score (GPT-4)'])
|
258 |
+
st.markdown(styled_summary.to_html(escape=False, index=False), unsafe_allow_html=True)
|
259 |
+
else:
|
260 |
+
st.write("No data available for this image.")
|
261 |
+
|
262 |
+
|