KB-VQA-E / my_model /tabs /run_inference.py
m7mdal7aj's picture
Update my_model/tabs/run_inference.py
eaa7a81 verified
raw
history blame
4.71 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
class InferenceRunner(StateManager):
def __init__(self):
super().__init__()
st.title("Run Inference")
st.write("Please note that this is not a general purpose mode, it is specifically trained on [OK-VQA Dataset](https://okvqa.allenai.org/) and desgined to give short and direct answers to the given questions about the given image")
self.initialize_state()
self.sample_images = [
"Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"
]
def answer_question(self, caption, detected_objects_str, question, model):
free_gpu_resources()
answer = model.generate_answer(question, caption, detected_objects_str)
free_gpu_resources()
return answer
def image_qa_app(self, kbvqa):
# Display sample images as clickable thumbnails
self.col1.write("Choose from sample images:")
cols = self.col1.columns(len(self.sample_images))
for idx, sample_image_path in enumerate(self.sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
self.process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
self.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
for image_key, image_data in self.get_images_data().items():
self.col2.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
if not image_data['analysis_done']:
self.col2.text("Cool image, please click 'Analyze Image'..")
if self.col2.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'], kbvqa)
self.update_image_data(image_key, caption, detected_objects_str, True)
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
question = self.col2.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
if self.col2.button('Get Answer', key=f'answer_{image_key}'):
if question not in [q for q, _ in qa_history]:
answer = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
self.add_to_qa_history(image_key, question, answer)
# Display Q&A history for each image
for q, a in qa_history:
st.text(f"Q: {q}\nA: {a}\n")
def run_inference(self):
self.set_up_widgets()
st.session_state['settings_changed'] = self.has_state_changed()
if st.session_state['settings_changed']:
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
st.session_state.button_label = "Reload Model" if self.is_model_loaded() and self.settings_changed else "Load Model"
if st.session_state.method == "Fine-Tuned Model":
if self.col1.button(st.session_state.button_label):
if st.session_state.button_label == "Load Model":
if self.is_model_loaded():
self.col1.text("Model already loaded and no settings were changed:)")
else:
self.load_model()
else:
self.reload_detection_model()
if self.is_model_loaded() and st.session_state.kbvqa.all_models_loaded:
self.image_qa_app(self.get_model())
else:
self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.')