KB-VQA-E / my_model /state_manager.py
m7mdal7aj's picture
Update my_model/state_manager.py
d6f8382 verified
raw
history blame
6.08 kB
import pandas as pd
import copy
import streamlit as st
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
class StateManager:
def initialize_state(self):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
if "button_label" not in st.session_state:
st.session_state['button_label'] = "Load Model"
if "previous_state" not in st.session_state:
st.session_state['previous_state'] = {}
if "settings_changed" not in st.session_state:
st.session_state['settings_changed'] = self.settings_changed
def set_up_widgets(self):
# Create two columns with different widths
col1, col2 = st.columns([0.8, 0.2]) # Adjust the ratio as needed
with col1:
st.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0, key='method')
detection_model = st.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, key='detection_model')
default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4
self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=default_confidence, step=0.1, slider_key_name='confidence_level')
# Conditional display of model settings
with col2:
show_model_settings = st.checkbox("Show Model Settings", False)
if show_model_settings:
self.display_model_settings()
def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name):
return st.slider(text, min_value, max_value, value, step, key=slider_key_name)
@property
def settings_changed(self):
return self.has_state_changed()
def display_model_settings(self):
st.write("#### Current Model Settings:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items() if key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', ]]
df = pd.DataFrame(data)
styled_df = df.style.set_properties(**{'background-color': 'black', 'color': 'white', 'border-color': 'white'}).set_table_styles([{'selector': 'th','props': [('background-color', 'black'), ('font-weight', 'bold')]}])
st.table(styled_df)
def display_session_state(self):
st.write("Current Model:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
df = pd.DataFrame(data)
st.table(df)
def load_model(self):
"""Load the KBVQA model with specified settings."""
try:
free_gpu_resources()
st.session_state['kbvqa'] = prepare_kbvqa_model()
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
# Update the previous state with current session state values
st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level}
st.session_state['button_label'] = "Reload Model"
st.text('button changed')
self.has_state_changed()
free_gpu_resources()
except Exception as e:
st.error(f"Error loading model: {e}")
# Function to check if any session state values have changed
def has_state_changed(self):
for key in st.session_state['previous_state']:
if st.session_state[key] != st.session_state['previous_state'][key]:
return True # Found a change
else: return False # No changes found
def get_model(self):
"""Retrieve the KBVQA model from the session state."""
return st.session_state.get('kbvqa', None)
def is_model_loaded(self):
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
def reload_detection_model(self):
try:
free_gpu_resources()
if self.is_model_loaded():
prepare_kbvqa_model(only_reload_detection_model=True)
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
st.success("Model reloaded with updated settings and ready for inference.")
free_gpu_resources()
except Exception as e:
st.error(f"Error reloading detection model: {e}")
def process_new_image(self, image_key, image, kbvqa):
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def analyze_image(self, image, kbvqa):
img = copy.deepcopy(image)
st.text("Analyzing the image .. ")
caption = kbvqa.get_caption(img)
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img)
return caption, detected_objects_str, image_with_boxes
def add_to_qa_history(self, image_key, question, answer):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key]['qa_history'].append((question, answer))
def get_images_data(self):
return st.session_state['images_data']
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key].update({
'caption': caption,
'detected_objects_str': detected_objects_str,
'analysis_done': analysis_done
})