|
import streamlit as st |
|
import torch |
|
import bitsandbytes |
|
import accelerate |
|
import scipy |
|
from PIL import Image |
|
import torch.nn as nn |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration |
|
from my_model.object_detection import detect_and_draw_objects |
|
|
|
def load_caption_model(blip2=False, instructblip=True): |
|
|
|
if blip2: |
|
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16) |
|
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16) |
|
if torch.cuda.device_count() > 1: |
|
model = nn.DataParallel(model) |
|
model.to('cuda') |
|
|
|
|
|
if instructblip: |
|
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16) |
|
if torch.cuda.device_count() > 1: |
|
model = nn.DataParallel(model) |
|
model.to('cuda') |
|
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16) |
|
|
|
return model, processor |
|
|
|
|
|
|
|
def answer_question(image, question, model, processor): |
|
|
|
|
|
image = Image.open(image) |
|
|
|
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16) |
|
|
|
if isinstance(model, torch.nn.DataParallel): |
|
|
|
out = model.module.generate(**inputs, max_length=100, min_length=20) |
|
else: |
|
|
|
out = model.generate(**inputs, max_length=100, min_length=20) |
|
|
|
answer = processor.decode(out[0], skip_special_tokens=True).strip() |
|
return answer |
|
|
|
st.title("Image Question Answering") |
|
|
|
|
|
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) |
|
|
|
|
|
question = st.text_input("Enter your question about the image:") |
|
|
|
|
|
if st.button("Get Answer"): |
|
if image is not None and question: |
|
|
|
st.image(image, use_column_width=True) |
|
|
|
model, processor = load_caption_model() |
|
answer = answer_question(image, question, model, processor) |
|
st.write(answer) |
|
else: |
|
st.write("Please upload an image and enter a question.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.sidebar.title("Object Detection") |
|
|
|
detect_model = st.sidebar.selectbox("Choose a model for object detection:", ["detic", "yolov5"]) |
|
|
|
threshold = st.sidebar.slider("Select Detection Threshold", 0.1, 0.9, 0.2 if detect_model == "yolov5" else 0.4) |
|
|
|
detect_button = st.sidebar.button("Detect Objects") |
|
|
|
|
|
def perform_object_detection(image, model_name, threshold): |
|
""" |
|
Perform object detection on the given image using the specified model and threshold. |
|
|
|
Args: |
|
image (PIL.Image): The image on which to perform object detection. |
|
model_name (str): The name of the object detection model to use. |
|
threshold (float): The threshold for object detection. |
|
|
|
Returns: |
|
PIL.Image, str: The image with drawn bounding boxes and a string of detected objects. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold) |
|
|
|
return processed_image, detected_objects |
|
|
|
|
|
|
|
|
|
if detect_button: |
|
if image is not None: |
|
|
|
try: |
|
image = Image.open(image) |
|
|
|
|
|
st.image(image, use_column_width=True, caption="Original Image") |
|
|
|
|
|
processed_image, detected_objects = perform_object_detection(image, detect_model, threshold) |
|
|
|
|
|
|
|
st.image(processed_image, use_column_width=True, caption="Image with Detected Objects") |
|
|
|
|
|
st.write(detected_objects) |
|
|
|
|
|
except Exception as e: |
|
st.error(f"Error loading image: {e}") |
|
|
|
else: |
|
st.write("Please upload an image for object detection.") |
|
|
|
|
|
|