KB-VQA-E / models /yolov5 /pyproject.toml
m7mdal7aj's picture
uploading a fresh copy of the detection models
92894b3 verified
raw
history blame
5.36 kB
# Ultralyticsv5 YOLO 🚀, AGPL-3.0 license
# Overview:
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
# Key Sections:
# - [build-system]: Specifies the build requirements and backend (e.g., setuptools, wheel).
# - [project]: Includes details like name, version, description, authors, dependencies and more.
# - [project.optional-dependencies]: Provides additional, optional packages for extended features.
# - [tool.*]: Configures settings for various tools (pytest, yapf, etc.) used in the project.
# Installation:
# The Ultralytics library can be installed using the command: 'pip install ultralytics'
# For development purposes, you can install the package in editable mode with: 'pip install -e .'
# This approach allows for real-time code modifications without the need for re-installation.
# Documentation:
# For comprehensive documentation and usage instructions, visit: https://docs.ultralytics.com
[build-system]
requires = ["setuptools>=43.0.0", "wheel"]
build-backend = "setuptools.build_meta"
# Project settings -----------------------------------------------------------------------------------------------------
[project]
name = "YOLOv5"
description = "Ultralytics YOLOv5 for SOTA object detection, instance segmentation and image classification."
readme = "README.md"
requires-python = ">=3.8"
license = { "text" = "AGPL-3.0" }
keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "HUB", "Ultralytics"]
authors = [
{ name = "Glenn Jocher" },
{ name = "Ayush Chaurasia" },
{ name = "Jing Qiu" }
]
maintainers = [
{ name = "Glenn Jocher" },
{ name = "Ayush Chaurasia" },
{ name = "Jing Qiu" }
]
classifiers = [
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Image Recognition",
"Operating System :: POSIX :: Linux",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
]
# Required dependencies ------------------------------------------------------------------------------------------------
dependencies = [
"matplotlib>=3.3.0",
"numpy>=1.22.2",
"opencv-python>=4.6.0",
"pillow>=7.1.2",
"pyyaml>=5.3.1",
"requests>=2.23.0",
"scipy>=1.4.1",
"torch>=1.8.0",
"torchvision>=0.9.0",
"tqdm>=4.64.0", # progress bars
"psutil", # system utilization
"py-cpuinfo", # display CPU info
"thop>=0.1.1", # FLOPs computation
"pandas>=1.1.4",
"seaborn>=0.11.0", # plotting
"ultralytics>=8.0.232"
]
# Optional dependencies ------------------------------------------------------------------------------------------------
[project.optional-dependencies]
dev = [
"ipython",
"check-manifest",
"pre-commit",
"pytest",
"pytest-cov",
"coverage[toml]",
"mkdocs-material",
"mkdocstrings[python]",
"mkdocs-redirects", # for 301 redirects
"mkdocs-ultralytics-plugin>=0.0.34", # for meta descriptions and images, dates and authors
]
export = [
"onnx>=1.12.0", # ONNX export
"coremltools>=7.0; platform_system != 'Windows'", # CoreML only supported on macOS and Linux
"openvino-dev>=2023.0", # OpenVINO export
"tensorflow<=2.13.1", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
"tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
]
# tensorflow>=2.4.1,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
# tflite-support # for TFLite model metadata
# scikit-learn==0.19.2 # CoreML quantization
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
logging = [
"comet", # https://docs.ultralytics.com/integrations/comet/
"tensorboard>=2.13.0",
"dvclive>=2.12.0",
]
extra = [
"ipython", # interactive notebook
"albumentations>=1.0.3", # training augmentations
"pycocotools>=2.0.6", # COCO mAP
]
[project.urls]
"Bug Reports" = "https://github.com/ultralytics/yolov5/issues"
"Funding" = "https://ultralytics.com"
"Source" = "https://github.com/ultralytics/yolov5/"
# Tools settings -------------------------------------------------------------------------------------------------------
[tool.pytest]
norecursedirs = [".git", "dist", "build"]
addopts = "--doctest-modules --durations=30 --color=yes"
[tool.isort]
line_length = 120
multi_line_output = 0
[tool.ruff]
line-length = 120
[tool.docformatter]
wrap-summaries = 120
wrap-descriptions = 120
in-place = true
pre-summary-newline = true
close-quotes-on-newline = true
[tool.codespell]
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'