|
import pandas as pd |
|
import copy |
|
import streamlit as st |
|
from my_model.gen_utilities import free_gpu_resources |
|
from my_model.KBVQA import KBVQA, prepare_kbvqa_model |
|
|
|
|
|
class StateManager: |
|
|
|
def initialize_state(self): |
|
if 'images_data' not in st.session_state: |
|
st.session_state['images_data'] = {} |
|
if 'kbvqa' not in st.session_state: |
|
st.session_state['kbvqa'] = None |
|
if "button_label" not in st.session_state: |
|
st.session_state['button_label'] = "Load Model" |
|
if "previous_state" not in st.session_state: |
|
st.session_state['previous_state'] = {} |
|
if "settings_changed" not in st.session_state: |
|
st.session_state['settings_changed'] = self.settings_changed |
|
|
|
|
|
|
|
def set_up_widgets(self): |
|
|
|
col1, col2 = st.columns([0.8, 0.2]) |
|
|
|
|
|
|
|
|
|
with col1: |
|
st.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0, key='method') |
|
detection_model = st.selectbox("Choose a model for objects detection:", ["yolov5", "detic"], index=1, key='detection_model') |
|
default_confidence = 0.2 if st.session_state.detection_model == "yolov5" else 0.4 |
|
self.set_slider_value(text="Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=default_confidence, step=0.1, slider_key_name='confidence_level') |
|
|
|
|
|
with col2: |
|
show_model_settings = st.checkbox("Show Model Settings", False) |
|
if show_model_settings: |
|
self.display_model_settings() |
|
|
|
|
|
def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name): |
|
|
|
return st.slider(text, min_value, max_value, value, step, key=slider_key_name) |
|
|
|
@property |
|
def settings_changed(self): |
|
return self.has_state_changed() |
|
|
|
def display_model_settings(self): |
|
st.write("#### Current Model Settings:") |
|
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items() if key in ["confidence_level", 'detection_model', 'method', 'kbvqa', 'previous_state', 'settings_changed', ]] |
|
df = pd.DataFrame(data) |
|
styled_df = df.style.set_properties(**{'background-color': 'black', 'color': 'white', 'border-color': 'white'}).set_table_styles([{'selector': 'th','props': [('background-color', 'black'), ('font-weight', 'bold')]}]) |
|
st.table(styled_df) |
|
|
|
def display_session_state(self): |
|
st.write("Current Model:") |
|
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] |
|
df = pd.DataFrame(data) |
|
st.table(df) |
|
|
|
def load_model(self): |
|
"""Load the KBVQA model with specified settings.""" |
|
try: |
|
free_gpu_resources() |
|
st.session_state['kbvqa'] = prepare_kbvqa_model() |
|
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level |
|
|
|
|
|
st.session_state['previous_state'] = {'method': st.session_state.method, 'detection_model': st.session_state.detection_model, 'confidence_level': st.session_state.confidence_level} |
|
|
|
st.session_state['button_label'] = "Reload Model" |
|
st.text('button changed') |
|
self.has_state_changed() |
|
free_gpu_resources() |
|
except Exception as e: |
|
st.error(f"Error loading model: {e}") |
|
|
|
|
|
def has_state_changed(self): |
|
for key in st.session_state['previous_state']: |
|
if st.session_state[key] != st.session_state['previous_state'][key]: |
|
return True |
|
else: return False |
|
|
|
def get_model(self): |
|
"""Retrieve the KBVQA model from the session state.""" |
|
return st.session_state.get('kbvqa', None) |
|
|
|
def is_model_loaded(self): |
|
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None |
|
|
|
def reload_detection_model(self): |
|
try: |
|
free_gpu_resources() |
|
if self.is_model_loaded(): |
|
prepare_kbvqa_model(only_reload_detection_model=True) |
|
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level |
|
st.success("Model reloaded with updated settings and ready for inference.") |
|
free_gpu_resources() |
|
except Exception as e: |
|
st.error(f"Error reloading detection model: {e}") |
|
|
|
|
|
def process_new_image(self, image_key, image, kbvqa): |
|
if image_key not in st.session_state['images_data']: |
|
st.session_state['images_data'][image_key] = { |
|
'image': image, |
|
'caption': '', |
|
'detected_objects_str': '', |
|
'qa_history': [], |
|
'analysis_done': False |
|
} |
|
|
|
def analyze_image(self, image, kbvqa): |
|
img = copy.deepcopy(image) |
|
st.text("Analyzing the image .. ") |
|
caption = kbvqa.get_caption(img) |
|
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img) |
|
return caption, detected_objects_str, image_with_boxes |
|
|
|
def add_to_qa_history(self, image_key, question, answer): |
|
if image_key in st.session_state['images_data']: |
|
st.session_state['images_data'][image_key]['qa_history'].append((question, answer)) |
|
|
|
def get_images_data(self): |
|
return st.session_state['images_data'] |
|
|
|
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done): |
|
if image_key in st.session_state['images_data']: |
|
st.session_state['images_data'][image_key].update({ |
|
'caption': caption, |
|
'detected_objects_str': detected_objects_str, |
|
'analysis_done': analysis_done |
|
}) |
|
|