|
|
|
""" |
|
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. |
|
|
|
Usage - sources: |
|
$ python detect.py --weights yolov5s.pt --source 0 # webcam |
|
img.jpg # image |
|
vid.mp4 # video |
|
screen # screenshot |
|
path/ # directory |
|
list.txt # list of images |
|
list.streams # list of streams |
|
'path/*.jpg' # glob |
|
'https://youtu.be/LNwODJXcvt4' # YouTube |
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream |
|
|
|
Usage - formats: |
|
$ python detect.py --weights yolov5s.pt # PyTorch |
|
yolov5s.torchscript # TorchScript |
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
yolov5s_openvino_model # OpenVINO |
|
yolov5s.engine # TensorRT |
|
yolov5s.mlmodel # CoreML (macOS-only) |
|
yolov5s_saved_model # TensorFlow SavedModel |
|
yolov5s.pb # TensorFlow GraphDef |
|
yolov5s.tflite # TensorFlow Lite |
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov5s_paddle_model # PaddlePaddle |
|
""" |
|
|
|
import argparse |
|
import csv |
|
import os |
|
import platform |
|
import sys |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box |
|
|
|
from models.common import DetectMultiBackend |
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams |
|
from utils.general import ( |
|
LOGGER, |
|
Profile, |
|
check_file, |
|
check_img_size, |
|
check_imshow, |
|
check_requirements, |
|
colorstr, |
|
cv2, |
|
increment_path, |
|
non_max_suppression, |
|
print_args, |
|
scale_boxes, |
|
strip_optimizer, |
|
xyxy2xywh, |
|
) |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
weights=ROOT / "yolov5s.pt", |
|
source=ROOT / "data/images", |
|
data=ROOT / "data/coco128.yaml", |
|
imgsz=(640, 640), |
|
conf_thres=0.25, |
|
iou_thres=0.45, |
|
max_det=1000, |
|
device="", |
|
view_img=False, |
|
save_txt=False, |
|
save_csv=False, |
|
save_conf=False, |
|
save_crop=False, |
|
nosave=False, |
|
classes=None, |
|
agnostic_nms=False, |
|
augment=False, |
|
visualize=False, |
|
update=False, |
|
project=ROOT / "runs/detect", |
|
name="exp", |
|
exist_ok=False, |
|
line_thickness=3, |
|
hide_labels=False, |
|
hide_conf=False, |
|
half=False, |
|
dnn=False, |
|
vid_stride=1, |
|
): |
|
source = str(source) |
|
save_img = not nosave and not source.endswith(".txt") |
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) |
|
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) |
|
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) |
|
screenshot = source.lower().startswith("screen") |
|
if is_url and is_file: |
|
source = check_file(source) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
device = select_device(device) |
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
stride, names, pt = model.stride, model.names, model.pt |
|
imgsz = check_img_size(imgsz, s=stride) |
|
|
|
|
|
bs = 1 |
|
if webcam: |
|
view_img = check_imshow(warn=True) |
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) |
|
bs = len(dataset) |
|
elif screenshot: |
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) |
|
else: |
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) |
|
vid_path, vid_writer = [None] * bs, [None] * bs |
|
|
|
|
|
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) |
|
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) |
|
for path, im, im0s, vid_cap, s in dataset: |
|
with dt[0]: |
|
im = torch.from_numpy(im).to(model.device) |
|
im = im.half() if model.fp16 else im.float() |
|
im /= 255 |
|
if len(im.shape) == 3: |
|
im = im[None] |
|
if model.xml and im.shape[0] > 1: |
|
ims = torch.chunk(im, im.shape[0], 0) |
|
|
|
|
|
with dt[1]: |
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False |
|
if model.xml and im.shape[0] > 1: |
|
pred = None |
|
for image in ims: |
|
if pred is None: |
|
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0) |
|
else: |
|
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0) |
|
pred = [pred, None] |
|
else: |
|
pred = model(im, augment=augment, visualize=visualize) |
|
|
|
with dt[2]: |
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) |
|
|
|
|
|
|
|
|
|
|
|
csv_path = save_dir / "predictions.csv" |
|
|
|
|
|
def write_to_csv(image_name, prediction, confidence): |
|
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence} |
|
with open(csv_path, mode="a", newline="") as f: |
|
writer = csv.DictWriter(f, fieldnames=data.keys()) |
|
if not csv_path.is_file(): |
|
writer.writeheader() |
|
writer.writerow(data) |
|
|
|
|
|
for i, det in enumerate(pred): |
|
seen += 1 |
|
if webcam: |
|
p, im0, frame = path[i], im0s[i].copy(), dataset.count |
|
s += f"{i}: " |
|
else: |
|
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) |
|
|
|
p = Path(p) |
|
save_path = str(save_dir / p.name) |
|
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") |
|
s += "%gx%g " % im.shape[2:] |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] |
|
imc = im0.copy() if save_crop else im0 |
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) |
|
if len(det): |
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
for c in det[:, 5].unique(): |
|
n = (det[:, 5] == c).sum() |
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
|
|
for *xyxy, conf, cls in reversed(det): |
|
c = int(cls) |
|
label = names[c] if hide_conf else f"{names[c]}" |
|
confidence = float(conf) |
|
confidence_str = f"{confidence:.2f}" |
|
|
|
if save_csv: |
|
write_to_csv(p.name, label, confidence_str) |
|
|
|
if save_txt: |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(f"{txt_path}.txt", "a") as f: |
|
f.write(("%g " * len(line)).rstrip() % line + "\n") |
|
|
|
if save_img or save_crop or view_img: |
|
c = int(cls) |
|
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") |
|
annotator.box_label(xyxy, label, color=colors(c, True)) |
|
if save_crop: |
|
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True) |
|
|
|
|
|
im0 = annotator.result() |
|
if view_img: |
|
if platform.system() == "Linux" and p not in windows: |
|
windows.append(p) |
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) |
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) |
|
cv2.imshow(str(p), im0) |
|
cv2.waitKey(1) |
|
|
|
|
|
if save_img: |
|
if dataset.mode == "image": |
|
cv2.imwrite(save_path, im0) |
|
else: |
|
if vid_path[i] != save_path: |
|
vid_path[i] = save_path |
|
if isinstance(vid_writer[i], cv2.VideoWriter): |
|
vid_writer[i].release() |
|
if vid_cap: |
|
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
else: |
|
fps, w, h = 30, im0.shape[1], im0.shape[0] |
|
save_path = str(Path(save_path).with_suffix(".mp4")) |
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) |
|
vid_writer[i].write(im0) |
|
|
|
|
|
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") |
|
|
|
|
|
t = tuple(x.t / seen * 1e3 for x in dt) |
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t) |
|
if save_txt or save_img: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" |
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
if update: |
|
strip_optimizer(weights[0]) |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL") |
|
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)") |
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path") |
|
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") |
|
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold") |
|
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold") |
|
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--view-img", action="store_true", help="show results") |
|
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") |
|
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format") |
|
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") |
|
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes") |
|
parser.add_argument("--nosave", action="store_true", help="do not save images/videos") |
|
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") |
|
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS") |
|
parser.add_argument("--augment", action="store_true", help="augmented inference") |
|
parser.add_argument("--visualize", action="store_true", help="visualize features") |
|
parser.add_argument("--update", action="store_true", help="update all models") |
|
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name") |
|
parser.add_argument("--name", default="exp", help="save results to project/name") |
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") |
|
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)") |
|
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels") |
|
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences") |
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") |
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") |
|
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride") |
|
opt = parser.parse_args() |
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|