KB-VQA-E / my_model /utilities /gen_utilities.py
m7mdal7aj's picture
Update my_model/utilities/gen_utilities.py
bcd09d4 verified
raw
history blame
6.91 kB
import pandas as pd
import os
from PIL import Image
import numpy as np
import torch
import matplotlib.pyplot as plt
from IPython import get_ipython
import sys
import gc
import streamlit as st
from typing import Tuple, Dict, List, Union
def show_image(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
"""
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
Handles different types of image inputs (file path, PIL Image, numpy array, PyTorch tensor).
Args:
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
Returns:
None
"""
in_jupyter = is_jupyter_notebook()
in_colab = is_google_colab()
# Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
if isinstance(image, str):
if os.path.isfile(image):
image = Image.open(image)
else:
raise ValueError("File path provided does not exist.")
elif isinstance(image, np.ndarray):
if image.ndim == 3 and image.shape[2] in [3, 4]:
image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
else:
image = Image.fromarray(image)
elif torch.is_tensor(image):
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
# Display the image
if in_jupyter or in_colab:
from IPython.display import display
display(image)
else:
image.show()
def show_image_with_matplotlib(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
"""
Display an image using Matplotlib.
Args:
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
Returns:
None
"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif torch.is_tensor(image):
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
plt.imshow(image)
plt.axis('off') # Turn off axis numbers
plt.show()
def is_jupyter_notebook() -> bool:
"""
Check if the code is running in a Jupyter notebook.
Returns:
bool: True if running in a Jupyter notebook, False otherwise.
"""
try:
from IPython import get_ipython
if 'IPKernelApp' not in get_ipython().config:
return False
if 'ipykernel' in str(type(get_ipython())):
return True # Running in Jupyter Notebook
except (NameError, AttributeError):
return False # Not running in Jupyter Notebook
return False # Default to False if none of the above conditions are met
def is_pycharm() -> bool:
"""
Check if the code is running in PyCharm.
Returns:
bool: True if running in PyCharm, False otherwise.
"""
return 'PYCHARM_HOSTED' in os.environ
def is_google_colab() -> bool:
"""
Check if the code is running in Google Colab.
Returns:
bool: True if running in Google Colab, False otherwise.
"""
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
def get_image_path(name: str, path_type: str) -> str:
"""
Generates a path for models, images, or data based on the specified type.
Args:
name (str): The name of the model, image, or data folder/file.
path_type (str): The type of path needed ('models', 'images', or 'data').
Returns:
str: The full path to the specified resource.
"""
# Get the current working directory (assumed to be inside 'code' folder)
current_dir = os.getcwd()
# Get the directory one level up (the parent directory)
parent_dir = os.path.dirname(current_dir)
# Construct the path to the specified folder
folder_path = os.path.join(parent_dir, path_type)
# Construct the full path to the specific resource
full_path = os.path.join(folder_path, name)
return full_path
def get_model_path(model_name: str) -> str:
"""
Get the path to the specified model folder.
Args:
model_name (str): Name of the model folder.
Returns:
str: Absolute path to the specified model folder.
"""
# Directory of the current script
current_script_dir = os.path.dirname(os.path.abspath(__file__))
# Directory of the 'app' folder (parent of the 'my_model' folder)
app_dir = os.path.dirname(os.path.dirname(current_script_dir))
# Path to the 'models/{model_name}' folder
model_path = os.path.join(app_dir, "models", model_name)
return model_path
def add_detected_objects_to_dataframe(df: pd.DataFrame, detector_type: str, image_directory: str, detector: object) -> pd.DataFrame:
"""
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column.
Prints a message every 200 images processed.
Args:
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames.
detector_type (str): The detection model to use ('detic' or 'yolov5').
image_directory (str): Path to the directory containing images.
detector (object): An instance of the ObjectDetector class.
Returns:
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'.
"""
# Ensure 'image_name' column exists in the DataFrame
if 'image_name' not in df.columns:
raise ValueError("DataFrame must contain an 'image_name' column.")
detector.load_model(detector_type)
# Initialize a counter for images processed
images_processed = 0
# Function to detect objects for a given image filename
def detect_objects_for_image(image_name):
nonlocal images_processed # Use the nonlocal keyword to modify the images_processed variable
image_path = os.path.join(image_directory, image_name)
if os.path.exists(image_path):
image = detector.process_image(image_path)
detected_objects_str, _ = detector.detect_objects(image, 0.2)
images_processed += 1
# Print message every 2 images processed
if images_processed % 200 == 0:
print(f"Completed {images_processed} images detection")
return detected_objects_str
else:
images_processed += 1
return "Image not found"
# Apply the function to each row in the DataFrame
df[detector.model_name] = df['image_name'].apply(detect_objects_for_image)
return df
def free_gpu_resources() -> None:
"""
Clears GPU memory.
Returns:
None
"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
gc.collect()