m7mdal7aj's picture
uploading a fresh copy of the detection models
92894b3 verified
raw
history blame
18.6 kB
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Logging utils."""
import json
import os
import warnings
from pathlib import Path
import pkg_resources as pkg
import torch
from utils.general import LOGGER, colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_labels, plot_results
from utils.torch_utils import de_parallel
LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv("RANK", -1))
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
SummaryWriter = lambda *args: None # None = SummaryWriter(str)
try:
import wandb
assert hasattr(wandb, "__version__") # verify package import not local dir
if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}:
try:
wandb_login_success = wandb.login(timeout=30)
except wandb.errors.UsageError: # known non-TTY terminal issue
wandb_login_success = False
if not wandb_login_success:
wandb = None
except (ImportError, AssertionError):
wandb = None
try:
import clearml
assert hasattr(clearml, "__version__") # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
try:
if RANK in {0, -1}:
import comet_ml
assert hasattr(comet_ml, "__version__") # verify package import not local dir
from utils.loggers.comet import CometLogger
else:
comet_ml = None
except (ImportError, AssertionError):
comet_ml = None
def _json_default(value):
"""
Format `value` for JSON serialization (e.g. unwrap tensors).
Fall back to strings.
"""
if isinstance(value, torch.Tensor):
try:
value = value.item()
except ValueError: # "only one element tensors can be converted to Python scalars"
pass
return value if isinstance(value, float) else str(value)
class Loggers:
# YOLOv5 Loggers class
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
self.save_dir = save_dir
self.weights = weights
self.opt = opt
self.hyp = hyp
self.plots = not opt.noplots # plot results
self.logger = logger # for printing results to console
self.include = include
self.keys = [
"train/box_loss",
"train/obj_loss",
"train/cls_loss", # train loss
"metrics/precision",
"metrics/recall",
"metrics/mAP_0.5",
"metrics/mAP_0.5:0.95", # metrics
"val/box_loss",
"val/obj_loss",
"val/cls_loss", # val loss
"x/lr0",
"x/lr1",
"x/lr2",
] # params
self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"]
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
self.ndjson_console = "ndjson_console" in self.include # log ndjson to console
self.ndjson_file = "ndjson_file" in self.include # log ndjson to file
# Messages
if not comet_ml:
prefix = colorstr("Comet: ")
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
self.logger.info(s)
# TensorBoard
s = self.save_dir
if "tb" in self.include and not self.opt.evolve:
prefix = colorstr("TensorBoard: ")
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
self.tb = SummaryWriter(str(s))
# W&B
if wandb and "wandb" in self.include:
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt)
else:
self.wandb = None
# ClearML
if clearml and "clearml" in self.include:
try:
self.clearml = ClearmlLogger(self.opt, self.hyp)
except Exception:
self.clearml = None
prefix = colorstr("ClearML: ")
LOGGER.warning(
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme"
)
else:
self.clearml = None
# Comet
if comet_ml and "comet" in self.include:
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
run_id = self.opt.resume.split("/")[-1]
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
else:
self.comet_logger = CometLogger(self.opt, self.hyp)
else:
self.comet_logger = None
@property
def remote_dataset(self):
# Get data_dict if custom dataset artifact link is provided
data_dict = None
if self.clearml:
data_dict = self.clearml.data_dict
if self.wandb:
data_dict = self.wandb.data_dict
if self.comet_logger:
data_dict = self.comet_logger.data_dict
return data_dict
def on_train_start(self):
if self.comet_logger:
self.comet_logger.on_train_start()
def on_pretrain_routine_start(self):
if self.comet_logger:
self.comet_logger.on_pretrain_routine_start()
def on_pretrain_routine_end(self, labels, names):
# Callback runs on pre-train routine end
if self.plots:
plot_labels(labels, names, self.save_dir)
paths = self.save_dir.glob("*labels*.jpg") # training labels
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
if self.comet_logger:
self.comet_logger.on_pretrain_routine_end(paths)
if self.clearml:
for path in paths:
self.clearml.log_plot(title=path.stem, plot_path=path)
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
log_dict = dict(zip(self.keys[:3], vals))
# Callback runs on train batch end
# ni: number integrated batches (since train start)
if self.plots:
if ni < 3:
f = self.save_dir / f"train_batch{ni}.jpg" # filename
plot_images(imgs, targets, paths, f)
if ni == 0 and self.tb and not self.opt.sync_bn:
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
if ni == 10 and (self.wandb or self.clearml):
files = sorted(self.save_dir.glob("train*.jpg"))
if self.wandb:
self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if self.clearml:
self.clearml.log_debug_samples(files, title="Mosaics")
if self.comet_logger:
self.comet_logger.on_train_batch_end(log_dict, step=ni)
def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
if self.wandb:
self.wandb.current_epoch = epoch + 1
if self.comet_logger:
self.comet_logger.on_train_epoch_end(epoch)
def on_val_start(self):
if self.comet_logger:
self.comet_logger.on_val_start()
def on_val_image_end(self, pred, predn, path, names, im):
# Callback runs on val image end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
if self.clearml:
self.clearml.log_image_with_boxes(path, pred, names, im)
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
if self.comet_logger:
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
# Callback runs on val end
if self.wandb or self.clearml:
files = sorted(self.save_dir.glob("val*.jpg"))
if self.wandb:
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
if self.clearml:
self.clearml.log_debug_samples(files, title="Validation")
if self.comet_logger:
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
# Callback runs at the end of each fit (train+val) epoch
x = dict(zip(self.keys, vals))
if self.csv:
file = self.save_dir / "results.csv"
n = len(x) + 1 # number of cols
s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") # add header
with open(file, "a") as f:
f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
if self.ndjson_console or self.ndjson_file:
json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default)
if self.ndjson_console:
print(json_data)
if self.ndjson_file:
file = self.save_dir / "results.ndjson"
with open(file, "a") as f:
print(json_data, file=f)
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
elif self.clearml: # log to ClearML if TensorBoard not used
self.clearml.log_scalars(x, epoch)
if self.wandb:
if best_fitness == fi:
best_results = [epoch] + vals[3:7]
for i, name in enumerate(self.best_keys):
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
self.wandb.log(x)
self.wandb.end_epoch()
if self.clearml:
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
self.clearml.current_epoch += 1
if self.comet_logger:
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
if self.wandb:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
if self.clearml:
self.clearml.task.update_output_model(
model_path=str(last), model_name="Latest Model", auto_delete_file=False
)
if self.comet_logger:
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
def on_train_end(self, last, best, epoch, results):
# Callback runs on training end, i.e. saving best model
if self.plots:
plot_results(file=self.save_dir / "results.csv") # save results.png
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
if self.wandb:
self.wandb.log(dict(zip(self.keys[3:10], results)))
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
if not self.opt.evolve:
wandb.log_artifact(
str(best if best.exists() else last),
type="model",
name=f"run_{self.wandb.wandb_run.id}_model",
aliases=["latest", "best", "stripped"],
)
self.wandb.finish_run()
if self.clearml and not self.opt.evolve:
self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
[self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
self.clearml.log_model(
str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch
)
if self.comet_logger:
final_results = dict(zip(self.keys[3:10], results))
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
def on_params_update(self, params: dict):
# Update hyperparams or configs of the experiment
if self.wandb:
self.wandb.wandb_run.config.update(params, allow_val_change=True)
if self.comet_logger:
self.comet_logger.on_params_update(params)
if self.clearml:
self.clearml.task.connect(params)
class GenericLogger:
"""
YOLOv5 General purpose logger for non-task specific logging
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
Arguments
opt: Run arguments
console_logger: Console logger
include: loggers to include
"""
def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")):
# init default loggers
self.save_dir = Path(opt.save_dir)
self.include = include
self.console_logger = console_logger
self.csv = self.save_dir / "results.csv" # CSV logger
if "tb" in self.include:
prefix = colorstr("TensorBoard: ")
self.console_logger.info(
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
)
self.tb = SummaryWriter(str(self.save_dir))
if wandb and "wandb" in self.include:
self.wandb = wandb.init(
project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt
)
else:
self.wandb = None
if clearml and "clearml" in self.include:
try:
# Hyp is not available in classification mode
hyp = {} if "hyp" not in opt else opt.hyp
self.clearml = ClearmlLogger(opt, hyp)
except Exception:
self.clearml = None
prefix = colorstr("ClearML: ")
LOGGER.warning(
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
f" See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme"
)
else:
self.clearml = None
def log_metrics(self, metrics, epoch):
# Log metrics dictionary to all loggers
if self.csv:
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
with open(self.csv, "a") as f:
f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
if self.tb:
for k, v in metrics.items():
self.tb.add_scalar(k, v, epoch)
if self.wandb:
self.wandb.log(metrics, step=epoch)
if self.clearml:
self.clearml.log_scalars(metrics, epoch)
def log_images(self, files, name="Images", epoch=0):
# Log images to all loggers
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
files = [f for f in files if f.exists()] # filter by exists
if self.tb:
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
if self.wandb:
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
if self.clearml:
if name == "Results":
[self.clearml.log_plot(f.stem, f) for f in files]
else:
self.clearml.log_debug_samples(files, title=name)
def log_graph(self, model, imgsz=(640, 640)):
# Log model graph to all loggers
if self.tb:
log_tensorboard_graph(self.tb, model, imgsz)
def log_model(self, model_path, epoch=0, metadata=None):
if metadata is None:
metadata = {}
# Log model to all loggers
if self.wandb:
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
art.add_file(str(model_path))
wandb.log_artifact(art)
if self.clearml:
self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
def update_params(self, params):
# Update the parameters logged
if self.wandb:
wandb.run.config.update(params, allow_val_change=True)
if self.clearml:
self.clearml.task.connect(params)
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
# Log model graph to TensorBoard
try:
p = next(model.parameters()) # for device, type
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress jit trace warning
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}")
def web_project_name(project):
# Convert local project name to web project name
if not project.startswith("runs/train"):
return project
suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else ""
return f"YOLOv5{suffix}"