|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from contextlib import contextmanager |
|
from pathlib import Path |
|
|
|
from utils.general import LOGGER, colorstr |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[3] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
RANK = int(os.getenv("RANK", -1)) |
|
DEPRECATION_WARNING = ( |
|
f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " |
|
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.' |
|
) |
|
|
|
try: |
|
import wandb |
|
|
|
assert hasattr(wandb, "__version__") |
|
LOGGER.warning(DEPRECATION_WARNING) |
|
except (ImportError, AssertionError): |
|
wandb = None |
|
|
|
|
|
class WandbLogger: |
|
""" |
|
Log training runs, datasets, models, and predictions to Weights & Biases. |
|
|
|
This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system |
|
configuration and metrics, model metrics, and basic data metrics and analyses. |
|
|
|
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged. |
|
|
|
For more on how this logger is used, see the Weights & Biases documentation: |
|
https://docs.wandb.com/guides/integrations/yolov5 |
|
""" |
|
|
|
def __init__(self, opt, run_id=None, job_type="Training"): |
|
""" |
|
- Initialize WandbLogger instance |
|
- Upload dataset if opt.upload_dataset is True |
|
- Setup training processes if job_type is 'Training' |
|
|
|
arguments: |
|
opt (namespace) -- Commandline arguments for this run |
|
run_id (str) -- Run ID of W&B run to be resumed |
|
job_type (str) -- To set the job_type for this run |
|
|
|
""" |
|
|
|
self.job_type = job_type |
|
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None |
|
self.val_artifact, self.train_artifact = None, None |
|
self.train_artifact_path, self.val_artifact_path = None, None |
|
self.result_artifact = None |
|
self.val_table, self.result_table = None, None |
|
self.max_imgs_to_log = 16 |
|
self.data_dict = None |
|
if self.wandb: |
|
self.wandb_run = wandb.run or wandb.init( |
|
config=opt, |
|
resume="allow", |
|
project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem, |
|
entity=opt.entity, |
|
name=opt.name if opt.name != "exp" else None, |
|
job_type=job_type, |
|
id=run_id, |
|
allow_val_change=True, |
|
) |
|
|
|
if self.wandb_run and self.job_type == "Training": |
|
if isinstance(opt.data, dict): |
|
|
|
|
|
self.data_dict = opt.data |
|
self.setup_training(opt) |
|
|
|
def setup_training(self, opt): |
|
""" |
|
Setup the necessary processes for training YOLO models: |
|
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX |
|
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded |
|
- Setup log_dict, initialize bbox_interval |
|
|
|
arguments: |
|
opt (namespace) -- commandline arguments for this run |
|
|
|
""" |
|
self.log_dict, self.current_epoch = {}, 0 |
|
self.bbox_interval = opt.bbox_interval |
|
if isinstance(opt.resume, str): |
|
model_dir, _ = self.download_model_artifact(opt) |
|
if model_dir: |
|
self.weights = Path(model_dir) / "last.pt" |
|
config = self.wandb_run.config |
|
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = ( |
|
str(self.weights), |
|
config.save_period, |
|
config.batch_size, |
|
config.bbox_interval, |
|
config.epochs, |
|
config.hyp, |
|
config.imgsz, |
|
) |
|
|
|
if opt.bbox_interval == -1: |
|
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 |
|
if opt.evolve or opt.noplots: |
|
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 |
|
|
|
def log_model(self, path, opt, epoch, fitness_score, best_model=False): |
|
""" |
|
Log the model checkpoint as W&B artifact. |
|
|
|
arguments: |
|
path (Path) -- Path of directory containing the checkpoints |
|
opt (namespace) -- Command line arguments for this run |
|
epoch (int) -- Current epoch number |
|
fitness_score (float) -- fitness score for current epoch |
|
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. |
|
""" |
|
model_artifact = wandb.Artifact( |
|
f"run_{wandb.run.id}_model", |
|
type="model", |
|
metadata={ |
|
"original_url": str(path), |
|
"epochs_trained": epoch + 1, |
|
"save period": opt.save_period, |
|
"project": opt.project, |
|
"total_epochs": opt.epochs, |
|
"fitness_score": fitness_score, |
|
}, |
|
) |
|
model_artifact.add_file(str(path / "last.pt"), name="last.pt") |
|
wandb.log_artifact( |
|
model_artifact, |
|
aliases=[ |
|
"latest", |
|
"last", |
|
f"epoch {str(self.current_epoch)}", |
|
"best" if best_model else "", |
|
], |
|
) |
|
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}") |
|
|
|
def val_one_image(self, pred, predn, path, names, im): |
|
pass |
|
|
|
def log(self, log_dict): |
|
""" |
|
Save the metrics to the logging dictionary. |
|
|
|
arguments: |
|
log_dict (Dict) -- metrics/media to be logged in current step |
|
""" |
|
if self.wandb_run: |
|
for key, value in log_dict.items(): |
|
self.log_dict[key] = value |
|
|
|
def end_epoch(self): |
|
""" |
|
Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. |
|
|
|
arguments: |
|
best_result (boolean): Boolean representing if the result of this evaluation is best or not |
|
""" |
|
if self.wandb_run: |
|
with all_logging_disabled(): |
|
try: |
|
wandb.log(self.log_dict) |
|
except BaseException as e: |
|
LOGGER.info( |
|
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}" |
|
) |
|
self.wandb_run.finish() |
|
self.wandb_run = None |
|
self.log_dict = {} |
|
|
|
def finish_run(self): |
|
"""Log metrics if any and finish the current W&B run.""" |
|
if self.wandb_run: |
|
if self.log_dict: |
|
with all_logging_disabled(): |
|
wandb.log(self.log_dict) |
|
wandb.run.finish() |
|
LOGGER.warning(DEPRECATION_WARNING) |
|
|
|
|
|
@contextmanager |
|
def all_logging_disabled(highest_level=logging.CRITICAL): |
|
"""source - https://gist.github.com/simon-weber/7853144 |
|
A context manager that will prevent any logging messages triggered during the body from being processed. |
|
:param highest_level: the maximum logging level in use. |
|
This would only need to be changed if a custom level greater than CRITICAL is defined. |
|
""" |
|
previous_level = logging.root.manager.disable |
|
logging.disable(highest_level) |
|
try: |
|
yield |
|
finally: |
|
logging.disable(previous_level) |
|
|