KB-VQA-E / my_model /KBVQA.py
m7mdal7aj's picture
Update my_model/KBVQA.py
61347b1 verified
raw
history blame
13.2 kB
import streamlit as st
import torch
import copy
import os
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from typing import Tuple, Optional
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.captioner.image_captioning import ImageCaptioningModel
from my_model.object_detection import ObjectDetector
import my_model.config.kbvqa_config as config
class KBVQA:
"""
The KBVQA class encapsulates the functionality for the Knowledge-Based Visual Question Answering (KBVQA) model.
It integrates various components such as an image captioning model, object detection model, and a fine-tuned
language model (LLAMA2) on OK-VQA dataset for generating answers to visual questions.
Attributes:
kbvqa_model_name (str): Name of the fine-tuned language model used for KBVQA.
quantization (str): The quantization setting for the model (e.g., '4bit', '8bit').
max_context_window (int): The maximum number of tokens allowed in the model's context window.
add_eos_token (bool): Flag to indicate whether to add an end-of-sentence token to the tokenizer.
trust_remote (bool): Flag to indicate whether to trust remote code when using the tokenizer.
use_fast (bool): Flag to indicate whether to use the fast version of the tokenizer.
low_cpu_mem_usage (bool): Flag to optimize model loading for low CPU memory usage.
kbvqa_tokenizer (Optional[AutoTokenizer]): The tokenizer for the KBVQA model.
captioner (Optional[ImageCaptioningModel]): The model used for generating image captions.
detector (Optional[ObjectDetector]): The object detection model.
detection_model (Optional[str]): The name of the object detection model.
detection_confidence (Optional[float]): The confidence threshold for object detection.
kbvqa_model (Optional[AutoModelForCausalLM]): The fine-tuned language model for KBVQA.
bnb_config (BitsAndBytesConfig): Configuration for BitsAndBytes optimized model.
access_token (str): Access token for Hugging Face API.
Methods:
create_bnb_config: Creates a BitsAndBytes configuration based on the quantization setting.
load_caption_model: Loads the image captioning model.
get_caption: Generates a caption for a given image.
load_detector: Loads the object detection model.
detect_objects: Detects objects in a given image.
load_fine_tuned_model: Loads the fine-tuned KBVQA model along with its tokenizer.
all_models_loaded: Checks if all the required models are loaded.
force_reload_model: Forces a reload of all models, freeing up GPU resources.
format_prompt: Formats the prompt for the KBVQA model.
generate_answer: Generates an answer to a given question using the KBVQA model.
"""
def __init__(self):
# self.col1, self.col2, self.col3 = st.columns([0.2, 0.6, 0.2])
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME
self.quantization: str = config.QUANTIZATION
self.max_context_window: int = config.MAX_CONTEXT_WINDOW
self.add_eos_token: bool = config.ADD_EOS_TOKEN
self.trust_remote: bool = config.TRUST_REMOTE
self.use_fast: bool = config.USE_FAST
self.low_cpu_mem_usage: bool = config.LOW_CPU_MEM_USAGE
self.kbvqa_tokenizer: Optional[AutoTokenizer] = None
self.captioner: Optional[ImageCaptioningModel] = None
self.detector: Optional[ObjectDetector] = None
self.detection_model: Optional[str] = None
self.detection_confidence: Optional[float] = None
self.kbvqa_model: Optional[AutoModelForCausalLM] = None
self.bnb_config: BitsAndBytesConfig = self.create_bnb_config()
self.access_token: str = config.HUGGINGFACE_TOKEN
def create_bnb_config(self) -> BitsAndBytesConfig:
"""
Creates a BitsAndBytes configuration based on the quantization setting.
Returns:
BitsAndBytesConfig: Configuration for BitsAndBytes optimized model.
"""
if self.quantization == '4bit':
return BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
elif self.quantization == '8bit':
return BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_quant_type="nf4",
bnb_8bit_compute_dtype=torch.bfloat16
)
def load_caption_model(self) -> None:
"""
Loads the image captioning model into the KBVQA instance.
"""
self.captioner = ImageCaptioningModel()
self.captioner.load_model()
def get_caption(self, img: Image.Image) -> str:
"""
Generates a caption for a given image using the image captioning model.
Args:
img (PIL.Image.Image): The image for which to generate a caption.
Returns:
str: The generated caption for the image.
"""
return self.captioner.generate_caption(img)
def load_detector(self, model: str) -> None:
"""
Loads the object detection model.
Args:
model (str): The name of the object detection model to load.
"""
self.detector = ObjectDetector()
self.detector.load_model(model)
def detect_objects(self, img: Image.Image) -> Tuple[Image.Image, str]:
"""
Detects objects in a given image using the loaded object detection model.
Args:
img (PIL.Image.Image): The image in which to detect objects.
Returns:
tuple: A tuple containing the image with detected objects drawn and a string representation of detected objects.
"""
image = self.detector.process_image(img)
detected_objects_string, detected_objects_list = self.detector.detect_objects(image, threshold=self.detection_confidence)
image_with_boxes = self.detector.draw_boxes(img, detected_objects_list)
return image_with_boxes, detected_objects_string
def load_fine_tuned_model(self) -> None:
"""
Loads the fine-tuned KBVQA model along with its tokenizer.
"""
self.kbvqa_model = AutoModelForCausalLM.from_pretrained(self.kbvqa_model_name,
device_map="auto",
low_cpu_mem_usage=True,
quantization_config=self.bnb_config,
token=self.access_token)
self.kbvqa_tokenizer = AutoTokenizer.from_pretrained(self.kbvqa_model_name,
use_fast=self.use_fast,
low_cpu_mem_usage=True,
trust_remote_code=self.trust_remote,
add_eos_token=self.add_eos_token,
token=self.access_token)
@property
def all_models_loaded(self):
"""
Checks if all the required models (KBVQA, captioner, detector) are loaded.
Returns:
bool: True if all models are loaded, False otherwise.
"""
return self.kbvqa_model is not None and self.captioner is not None and self.detector is not None
def delete_model(self):
"""
Forces a reload of all models, freeing up GPU resources. This method deletes the current models and calls `free_gpu_resources`.
"""
free_gpu_resources()
if self.kbvqa_model is not None:
del self.kbvqa_model
free_gpu_resources()
if self.captioner is not None:
del self.captioner
free_gpu_resources()
if self.detector is not None:
del self.detector
free_gpu_resources()
free_gpu_resources()
def format_prompt(self, current_query: str, history: Optional[str] = None, sys_prompt: Optional[str] = None, caption: str = None, objects: Optional[str] = None) -> str:
"""
Formats the prompt for the KBVQA model based on the provided parameters.
Args:
current_query (str): The current question to be answered.
history (str, optional): The history of previous interactions.
sys_prompt (str, optional): The system prompt or instructions for the model.
caption (str, optional): The caption of the image.
objects (str, optional): The detected objects in the image.
Returns:
str: The formatted prompt for the KBVQA model.
"""
B_SENT = '<s>'
E_SENT = '</s>'
B_INST = '[INST]'
E_INST = '[/INST]'
B_SYS = '<<SYS>>\n'
E_SYS = '\n<</SYS>>\n\n'
B_CAP = '[CAP]'
E_CAP = '[/CAP]'
B_QES = '[QES]'
E_QES = '[/QES]'
B_OBJ = '[OBJ]'
E_OBJ = '[/OBJ]'
current_query = current_query.strip()
if sys_prompt is None:
sys_prompt = config.SYSTEM_PROMPT.strip()
if history is None:
if objects is None:
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_QES}{current_query}{E_QES}{E_INST}"""
else:
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_OBJ}{objects}{E_OBJ}{B_QES}taking into consideration the objects with high certainty, {current_query}{E_QES}{E_INST}"""
else:
p = f"""{history}\n{B_SENT}{B_INST} {B_QES}{current_query}{E_QES}{E_INST}"""
return p
def generate_answer(self, question: str, caption: str, detected_objects_str: str) -> str:
"""
Generates an answer to a given question using the KBVQA model.
Args:
question (str): The question to be answered.
caption (str): The caption of the image related to the question.
detected_objects_str (str): The string representation of detected objects in the image.
Returns:
str: The generated answer to the question.
"""
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
num_tokens = len(self.kbvqa_tokenizer.tokenize(prompt))
if num_tokens > self.max_context_window:
st.write(f"Prompt too long with {num_tokens} tokens, consider increasing the confidence threshold for the object detector")
return
model_inputs = self.kbvqa_tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to('cuda')
input_ids = model_inputs["input_ids"]
output_ids = self.kbvqa_model.generate(input_ids)
index = input_ids.shape[1] # needed to avoid printing the input prompt
history = self.kbvqa_tokenizer.decode(output_ids[0], skip_special_tokens=False)
output_text = self.kbvqa_tokenizer.decode(output_ids[0][index:], skip_special_tokens=True)
return output_text.capitalize()
def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload: bool = False) -> KBVQA:
"""
Prepares the KBVQA model for use, including loading necessary sub-models.
Args:
only_reload_detection_model (bool): If True, only the object detection model is reloaded.
Returns:
KBVQA: An instance of the KBVQA model ready for inference.
"""
free_gpu_resources()
kbvqa = KBVQA()
kbvqa.detection_model = st.session_state.detection_model
# Progress bar for model loading
if force_reload:
self.delete_model()
loading_message = 'Force Reloading model.. this should take no more than a few minutes!'
else: loading_message = 'Looading model.. this should take no more than a few minutes!'
with st.spinner(loading_message):
if not only_reload_detection_model:
progress_bar = st.progress(0)
kbvqa.load_detector(kbvqa.detection_model)
progress_bar.progress(33)
kbvqa.load_caption_model()
free_gpu_resources()
progress_bar.progress(75)
st.text('Almost there :)')
kbvqa.load_fine_tuned_model()
free_gpu_resources()
progress_bar.progress(100)
else:
progress_bar = st.progress(0)
kbvqa.load_detector(kbvqa.detection_model)
progress_bar.progress(100)
if kbvqa.all_models_loaded:
st.success('Model loaded successfully and ready for inferecne!')
kbvqa.kbvqa_model.eval()
free_gpu_resources()
return kbvqa