m7mdal7aj's picture
uploading a fresh copy of the detection models
92894b3 verified
raw
history blame
13.1 kB
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Dataloaders."""
import os
import random
import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader, distributed
from ..augmentations import augment_hsv, copy_paste, letterbox
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, SmartDistributedSampler, seed_worker
from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
from ..torch_utils import torch_distributed_zero_first
from .augmentations import mixup, random_perspective
RANK = int(os.getenv("RANK", -1))
def create_dataloader(
path,
imgsz,
batch_size,
stride,
single_cls=False,
hyp=None,
augment=False,
cache=False,
pad=0.0,
rect=False,
rank=-1,
workers=8,
image_weights=False,
quad=False,
prefix="",
shuffle=False,
mask_downsample_ratio=1,
overlap_mask=False,
seed=0,
):
if rect and shuffle:
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = LoadImagesAndLabelsAndMasks(
path,
imgsz,
batch_size,
augment=augment, # augmentation
hyp=hyp, # hyperparameters
rect=rect, # rectangular batches
cache_images=cache,
single_cls=single_cls,
stride=int(stride),
pad=pad,
image_weights=image_weights,
prefix=prefix,
downsample_ratio=mask_downsample_ratio,
overlap=overlap_mask,
rank=rank,
)
batch_size = min(batch_size, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle)
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + seed + RANK)
return loader(
dataset,
batch_size=batch_size,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
worker_init_fn=seed_worker,
generator=generator,
), dataset
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
def __init__(
self,
path,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
image_weights=False,
cache_images=False,
single_cls=False,
stride=32,
pad=0,
min_items=0,
prefix="",
downsample_ratio=1,
overlap=False,
rank=-1,
seed=0,
):
super().__init__(
path,
img_size,
batch_size,
augment,
hyp,
rect,
image_weights,
cache_images,
single_cls,
stride,
pad,
min_items,
prefix,
rank,
seed,
)
self.downsample_ratio = downsample_ratio
self.overlap = overlap
def __getitem__(self, index):
index = self.indices[index] # linear, shuffled, or image_weights
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp["mosaic"]
masks = []
if mosaic:
# Load mosaic
img, labels, segments = self.load_mosaic(index)
shapes = None
# MixUp augmentation
if random.random() < hyp["mixup"]:
img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
else:
# Load image
img, (h0, w0), (h, w) = self.load_image(index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
# [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
segments = self.segments[index].copy()
if len(segments):
for i_s in range(len(segments)):
segments[i_s] = xyn2xy(
segments[i_s],
ratio[0] * w,
ratio[1] * h,
padw=pad[0],
padh=pad[1],
)
if labels.size: # normalized xywh to pixel xyxy format
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
if self.augment:
img, labels, segments = random_perspective(
img,
labels,
segments=segments,
degrees=hyp["degrees"],
translate=hyp["translate"],
scale=hyp["scale"],
shear=hyp["shear"],
perspective=hyp["perspective"],
)
nl = len(labels) # number of labels
if nl:
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
if self.overlap:
masks, sorted_idx = polygons2masks_overlap(
img.shape[:2], segments, downsample_ratio=self.downsample_ratio
)
masks = masks[None] # (640, 640) -> (1, 640, 640)
labels = labels[sorted_idx]
else:
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
masks = (
torch.from_numpy(masks)
if len(masks)
else torch.zeros(
1 if self.overlap else nl, img.shape[0] // self.downsample_ratio, img.shape[1] // self.downsample_ratio
)
)
# TODO: albumentations support
if self.augment:
# Albumentations
# there are some augmentation that won't change boxes and masks,
# so just be it for now.
img, labels = self.albumentations(img, labels)
nl = len(labels) # update after albumentations
# HSV color-space
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
# Flip up-down
if random.random() < hyp["flipud"]:
img = np.flipud(img)
if nl:
labels[:, 2] = 1 - labels[:, 2]
masks = torch.flip(masks, dims=[1])
# Flip left-right
if random.random() < hyp["fliplr"]:
img = np.fliplr(img)
if nl:
labels[:, 1] = 1 - labels[:, 1]
masks = torch.flip(masks, dims=[2])
# Cutouts # labels = cutout(img, labels, p=0.5)
labels_out = torch.zeros((nl, 6))
if nl:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
def load_mosaic(self, index):
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
labels4, segments4 = [], []
s = self.img_size
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
# 3 additional image indices
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = self.load_image(index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
labels, segments = self.labels[index].copy(), self.segments[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
labels4.append(labels)
segments4.extend(segments)
# Concat/clip labels
labels4 = np.concatenate(labels4, 0)
for x in (labels4[:, 1:], *segments4):
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
# img4, labels4 = replicate(img4, labels4) # replicate
# Augment
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
img4, labels4, segments4 = random_perspective(
img4,
labels4,
segments4,
degrees=self.hyp["degrees"],
translate=self.hyp["translate"],
scale=self.hyp["scale"],
shear=self.hyp["shear"],
perspective=self.hyp["perspective"],
border=self.mosaic_border,
) # border to remove
return img4, labels4, segments4
@staticmethod
def collate_fn(batch):
img, label, path, shapes, masks = zip(*batch) # transposed
batched_masks = torch.cat(masks, 0)
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
"""
Args:
img_size (tuple): The image size.
polygons (np.ndarray): [N, M], N is the number of polygons,
M is the number of points(Be divided by 2).
"""
mask = np.zeros(img_size, dtype=np.uint8)
polygons = np.asarray(polygons)
polygons = polygons.astype(np.int32)
shape = polygons.shape
polygons = polygons.reshape(shape[0], -1, 2)
cv2.fillPoly(mask, polygons, color=color)
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
# NOTE: fillPoly firstly then resize is trying the keep the same way
# of loss calculation when mask-ratio=1.
mask = cv2.resize(mask, (nw, nh))
return mask
def polygons2masks(img_size, polygons, color, downsample_ratio=1):
"""
Args:
img_size (tuple): The image size.
polygons (list[np.ndarray]): each polygon is [N, M],
N is the number of polygons,
M is the number of points(Be divided by 2).
"""
masks = []
for si in range(len(polygons)):
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
masks.append(mask)
return np.array(masks)
def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
"""Return a (640, 640) overlap mask."""
masks = np.zeros(
(img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
dtype=np.int32 if len(segments) > 255 else np.uint8,
)
areas = []
ms = []
for si in range(len(segments)):
mask = polygon2mask(
img_size,
[segments[si].reshape(-1)],
downsample_ratio=downsample_ratio,
color=1,
)
ms.append(mask)
areas.append(mask.sum())
areas = np.asarray(areas)
index = np.argsort(-areas)
ms = np.array(ms)[index]
for i in range(len(segments)):
mask = ms[i] * (i + 1)
masks = masks + mask
masks = np.clip(masks, a_min=0, a_max=i + 1)
return masks, index