|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
import numpy as np |
|
import cv2 |
|
import os |
|
from utilities import get_path, show_image, show_image_with_matplotlib |
|
import transformers |
|
|
|
class ObjectDetector: |
|
def __init__(self): |
|
self.model = None |
|
self.processor = None |
|
self.model_name = None |
|
|
|
def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'): |
|
""" |
|
Load the specified object detection model. |
|
:param model_name: Name of the model to load. |
|
:param pretrained: Boolean indicating if pretrained model should be used. |
|
:param model_version: Version of the model, applicable for YOLOv5. |
|
""" |
|
self.model_name = model_name |
|
if model_name == 'detic': |
|
self.load_detic_model(pretrained) |
|
elif model_name == 'yolov5': |
|
self.load_yolov5_model(pretrained, model_version) |
|
else: |
|
raise ValueError("Unsupported model name") |
|
|
|
|
|
def load_detic_model(self, pretrained): |
|
"""Load the Detic model.""" |
|
try: |
|
model_path = get_path('deformable-detr-detic', 'Models') |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection |
|
self.processor = AutoImageProcessor.from_pretrained(model_path) |
|
self.model = AutoModelForObjectDetection.from_pretrained(model_path) |
|
except Exception as e: |
|
print(f"Error loading Detic model: {e}") |
|
|
|
|
|
def load_yolov5_model(self, pretrained, model_version): |
|
"""Load the YOLOv5 model.""" |
|
try: |
|
model_path = get_path('yolov5', 'Models') |
|
if model_path and os.path.exists(model_path): |
|
with os.scandir(model_path) as main_dir: |
|
self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local") |
|
else: |
|
self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained) |
|
except Exception as e: |
|
print(f"Error loading YOLOv5 model: {e}") |
|
|
|
|
|
def process_image(self, image_path: str) -> Image.Image: |
|
""" |
|
Process the image from the given path. |
|
:param image_path: Path to the image file. |
|
:return: Processed image. |
|
""" |
|
with Image.open(image_path) as image: |
|
return image.convert("RGB") |
|
|
|
|
|
def detect_objects(self, image: Image.Image, threshold: float = 0.4): |
|
""" |
|
Detect objects in the given image. |
|
:param image: Image in which to detect objects. |
|
:param threshold: Detection threshold. |
|
:return: Tuple of detected objects string and list. |
|
""" |
|
detected_objects_str, detected_objects_list = "", [] |
|
if self.model_name == 'detic': |
|
detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold) |
|
elif self.model_name == 'yolov5': |
|
detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold) |
|
return detected_objects_str.strip(), detected_objects_list |
|
|
|
|
|
def detect_with_detic(self, image: Image.Image, threshold: float): |
|
"""Detect objects using Detic model.""" |
|
inputs = self.processor(images=image, return_tensors="pt") |
|
outputs = self.model(**inputs) |
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[ |
|
0] |
|
|
|
detected_objects_str = "" |
|
detected_objects_list = [] |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
if score >= threshold: |
|
label_name = self.model.config.id2label[label.item()] |
|
box_rounded = [round(coord, 2) for coord in box.tolist()] |
|
certainty = round(score.item() * 100, 2) |
|
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" |
|
detected_objects_list.append((label_name, box_rounded, certainty)) |
|
return detected_objects_str, detected_objects_list |
|
|
|
|
|
def detect_with_yolov5(self, image: Image.Image, threshold: float): |
|
"""Detect objects using YOLOv5 model.""" |
|
|
|
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
results = self.model(cv2_img) |
|
|
|
detected_objects_str = "" |
|
detected_objects_list = [] |
|
for *bbox, conf, cls in results.xyxy[0]: |
|
if conf >= threshold: |
|
label_name = results.names[int(cls)] |
|
box_rounded = [round(coord.item(), 2) for coord in bbox] |
|
certainty = round(conf.item() * 100, 2) |
|
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" |
|
detected_objects_list.append((label_name, box_rounded, certainty)) |
|
return detected_objects_str, detected_objects_list |
|
|
|
|
|
def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image: |
|
""" |
|
Draw bounding boxes around detected objects in the image. |
|
:param image: Image on which to draw. |
|
:param detected_objects: List of detected objects. |
|
:param show_confidence: Boolean to show confidence scores. |
|
:return: Image with drawn boxes. |
|
""" |
|
draw = ImageDraw.Draw(image) |
|
try: |
|
font = ImageFont.truetype("arial.ttf", 15) |
|
except IOError: |
|
font = ImageFont.load_default() |
|
|
|
colors = ["red", "green", "blue", "yellow", "purple", "orange"] |
|
label_color_map = {} |
|
|
|
for label_name, box, score in detected_objects: |
|
if label_name not in label_color_map: |
|
label_color_map[label_name] = colors[len(label_color_map) % len(colors)] |
|
|
|
color = label_color_map[label_name] |
|
draw.rectangle(box, outline=color, width=3) |
|
|
|
label_text = f"{label_name}" |
|
if show_confidence: |
|
label_text += f" ({round(score, 2)}%)" |
|
draw.text((box[0], box[1]), label_text, fill=color, font=font) |
|
|
|
return image |
|
|
|
|
|
if __name__=="__main__": |
|
|
|
detector = ObjectDetector() |
|
image_path = get_path('horse.jpg', 'Sample_Images') |
|
|
|
detector.load_model('yolov5') |
|
|
|
image = detector.process_image(image_path) |
|
detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2) |
|
image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False) |
|
print(detected_objects_string) |
|
show_image(image_with_boxes) |
|
|