from object_detection import ObjectDetector | |
import os | |
def detect_objects_for_image(image_name, detector): | |
if os.path.exists(image_path): | |
image = detector.process_image(image_path) | |
detected_objects_str, _ = detector.detect_objects(image) | |
return detected_objects_str | |
else: | |
return "Image not found" | |
def add_detected_objects_to_dataframe(df, image_directory, detector): | |
""" | |
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column. | |
Parameters: | |
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames. | |
image_directory (str): Path to the directory containing images. | |
detector (ObjectDetector): An instance of the ObjectDetector class. | |
Returns: | |
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'. | |
""" | |
# Ensure 'image_name' column exists in the DataFrame | |
if 'image_name' not in df.columns: | |
raise ValueError("DataFrame must contain an 'image_name' column.") | |
image_path = os.path.join(image_directory, image_name) | |
# Function to detect objects for a given image filename | |
# Apply the function to each row in the DataFrame | |
df['detected_objects'] = df['image_name'].apply(detect_objects_for_image) | |
return df | |
# Example usage (assuming the function will be used in a context where 'detector' is defined and configured): | |
# df_images = pd.DataFrame({"image_name": ["image1.jpg", "image2.jpg", ...]}) | |
# image_directory = "path/to/image_directory" | |
# updated_df = add_detected_objects_to_dataframe(df_images, image_directory, detector) | |
# updated_df.head() | |