|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..general import xywh2xyxy |
|
from ..loss import FocalLoss, smooth_BCE |
|
from ..metrics import bbox_iou |
|
from ..torch_utils import de_parallel |
|
from .general import crop_mask |
|
|
|
|
|
class ComputeLoss: |
|
|
|
def __init__(self, model, autobalance=False, overlap=False): |
|
self.sort_obj_iou = False |
|
self.overlap = overlap |
|
device = next(model.parameters()).device |
|
h = model.hyp |
|
|
|
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device)) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["obj_pw"]], device=device)) |
|
|
|
|
|
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) |
|
|
|
|
|
g = h["fl_gamma"] |
|
if g > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
m = de_parallel(model).model[-1] |
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) |
|
self.ssi = list(m.stride).index(16) if autobalance else 0 |
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance |
|
self.na = m.na |
|
self.nc = m.nc |
|
self.nl = m.nl |
|
self.nm = m.nm |
|
self.anchors = m.anchors |
|
self.device = device |
|
|
|
def __call__(self, preds, targets, masks): |
|
p, proto = preds |
|
bs, nm, mask_h, mask_w = proto.shape |
|
lcls = torch.zeros(1, device=self.device) |
|
lbox = torch.zeros(1, device=self.device) |
|
lobj = torch.zeros(1, device=self.device) |
|
lseg = torch.zeros(1, device=self.device) |
|
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) |
|
|
|
|
|
for i, pi in enumerate(p): |
|
b, a, gj, gi = indices[i] |
|
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) |
|
|
|
n = b.shape[0] |
|
if n: |
|
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) |
|
|
|
|
|
pxy = pxy.sigmoid() * 2 - 0.5 |
|
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] |
|
pbox = torch.cat((pxy, pwh), 1) |
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() |
|
lbox += (1.0 - iou).mean() |
|
|
|
|
|
iou = iou.detach().clamp(0).type(tobj.dtype) |
|
if self.sort_obj_iou: |
|
j = iou.argsort() |
|
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] |
|
if self.gr < 1: |
|
iou = (1.0 - self.gr) + self.gr * iou |
|
tobj[b, a, gj, gi] = iou |
|
|
|
|
|
if self.nc > 1: |
|
t = torch.full_like(pcls, self.cn, device=self.device) |
|
t[range(n), tcls[i]] = self.cp |
|
lcls += self.BCEcls(pcls, t) |
|
|
|
|
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): |
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0] |
|
marea = xywhn[i][:, 2:].prod(1) |
|
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)) |
|
for bi in b.unique(): |
|
j = b == bi |
|
if self.overlap: |
|
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0) |
|
else: |
|
mask_gti = masks[tidxs[i]][j] |
|
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]) |
|
|
|
obji = self.BCEobj(pi[..., 4], tobj) |
|
lobj += obji * self.balance[i] |
|
if self.autobalance: |
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() |
|
|
|
if self.autobalance: |
|
self.balance = [x / self.balance[self.ssi] for x in self.balance] |
|
lbox *= self.hyp["box"] |
|
lobj *= self.hyp["obj"] |
|
lcls *= self.hyp["cls"] |
|
lseg *= self.hyp["box"] / bs |
|
|
|
loss = lbox + lobj + lcls + lseg |
|
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach() |
|
|
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): |
|
|
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) |
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none") |
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
|
def build_targets(self, p, targets): |
|
|
|
na, nt = self.na, targets.shape[0] |
|
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], [] |
|
gain = torch.ones(8, device=self.device) |
|
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) |
|
if self.overlap: |
|
batch = p[0].shape[0] |
|
ti = [] |
|
for i in range(batch): |
|
num = (targets[:, 0] == i).sum() |
|
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) |
|
ti = torch.cat(ti, 1) |
|
else: |
|
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1) |
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) |
|
|
|
g = 0.5 |
|
off = ( |
|
torch.tensor( |
|
[ |
|
[0, 0], |
|
[1, 0], |
|
[0, 1], |
|
[-1, 0], |
|
[0, -1], |
|
|
|
], |
|
device=self.device, |
|
).float() |
|
* g |
|
) |
|
|
|
for i in range(self.nl): |
|
anchors, shape = self.anchors[i], p[i].shape |
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] |
|
|
|
|
|
t = targets * gain |
|
if nt: |
|
|
|
r = t[..., 4:6] / anchors[:, None] |
|
j = torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"] |
|
|
|
t = t[j] |
|
|
|
|
|
gxy = t[:, 2:4] |
|
gxi = gain[[2, 3]] - gxy |
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T |
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T |
|
j = torch.stack((torch.ones_like(j), j, k, l, m)) |
|
t = t.repeat((5, 1, 1))[j] |
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] |
|
else: |
|
t = targets[0] |
|
offsets = 0 |
|
|
|
|
|
bc, gxy, gwh, at = t.chunk(4, 1) |
|
(a, tidx), (b, c) = at.long().T, bc.long().T |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.T |
|
|
|
|
|
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) |
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) |
|
anch.append(anchors[a]) |
|
tcls.append(c) |
|
tidxs.append(tidx) |
|
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) |
|
|
|
return tcls, tbox, indices, anch, tidxs, xywhn |
|
|