Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,113 +1,122 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
-
from peft import PeftModel, PeftConfig
|
7 |
import torch
|
|
|
|
|
|
|
8 |
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
"CompVis/stable-diffusion-v1-4",
|
14 |
-
"stabilityai/sdxl-turbo",
|
15 |
-
"runwayml/stable-diffusion-v1-5",
|
16 |
-
"stabilityai/stable-diffusion-2-1",
|
17 |
-
"m4r4k0s23/hw5_lora_raccoon",
|
18 |
-
]
|
19 |
|
20 |
if torch.cuda.is_available():
|
21 |
torch_dtype = torch.float16
|
22 |
else:
|
23 |
torch_dtype = torch.float32
|
24 |
|
25 |
-
# Cache to avoid re-initializing pipelines repeatedly
|
26 |
-
model_cache = {}
|
27 |
-
|
28 |
-
def load_pipeline(model_id: str):
|
29 |
-
"""
|
30 |
-
Loads or retrieves a cached DiffusionPipeline.
|
31 |
-
|
32 |
-
If the chosen model is your LoRA adapter, then load the base model
|
33 |
-
(CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
|
34 |
-
"""
|
35 |
-
if model_id in model_cache:
|
36 |
-
return model_cache[model_id]
|
37 |
-
|
38 |
-
if model_id == "m4r4k0s23/hw5_lora_raccoon":
|
39 |
-
# Use the specified base model for your LoRA adapter.
|
40 |
-
base_model = "CompVis/stable-diffusion-v1-4"
|
41 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
|
42 |
-
# Load the LoRA weights
|
43 |
-
pipe.unet = PeftModel.from_pretrained(
|
44 |
-
pipe.unet,
|
45 |
-
model_id,
|
46 |
-
subfolder="unet",
|
47 |
-
torch_dtype=torch_dtype
|
48 |
-
)
|
49 |
-
pipe.text_encoder = PeftModel.from_pretrained(
|
50 |
-
pipe.text_encoder,
|
51 |
-
model_id,
|
52 |
-
subfolder="text_encoder",
|
53 |
-
torch_dtype=torch_dtype
|
54 |
-
)
|
55 |
-
else:
|
56 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
57 |
-
|
58 |
-
pipe.to(device)
|
59 |
-
model_cache[model_id] = pipe
|
60 |
-
return pipe
|
61 |
-
|
62 |
MAX_SEED = np.iinfo(np.int32).max
|
63 |
MAX_IMAGE_SIZE = 1024
|
64 |
|
|
|
|
|
65 |
def infer(
|
66 |
-
model_id,
|
67 |
prompt,
|
68 |
negative_prompt,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
guidance_scale,
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
css = """
|
113 |
#col-container {
|
@@ -116,55 +125,131 @@ css = """
|
|
116 |
}
|
117 |
"""
|
118 |
|
119 |
-
|
|
|
|
|
|
|
120 |
with gr.Column(elem_id="col-container"):
|
121 |
-
gr.Markdown(" # Text-to-Image
|
122 |
|
123 |
with gr.Row():
|
124 |
-
|
125 |
-
|
126 |
-
label="Model",
|
127 |
-
choices=MODEL_LIST,
|
128 |
-
value=MODEL_LIST[0], # Default model
|
129 |
-
)
|
130 |
-
|
131 |
-
with gr.Row():
|
132 |
-
prompt = gr.Text(
|
133 |
-
label="Prompt",
|
134 |
-
show_label=False,
|
135 |
-
max_lines=1,
|
136 |
-
placeholder="Enter your prompt",
|
137 |
-
container=False,
|
138 |
-
)
|
139 |
-
|
140 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
141 |
-
|
142 |
-
result = gr.Image(label="Result", show_label=False)
|
143 |
-
|
144 |
-
with gr.Accordion("Advanced Settings", open=False):
|
145 |
-
negative_prompt = gr.Text(
|
146 |
-
label="Negative prompt",
|
147 |
max_lines=1,
|
148 |
-
placeholder="Enter
|
|
|
149 |
)
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
label="Seed",
|
153 |
minimum=0,
|
154 |
maximum=MAX_SEED,
|
155 |
step=1,
|
156 |
-
value=42,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
with gr.Row():
|
162 |
width = gr.Slider(
|
163 |
label="Width",
|
164 |
minimum=256,
|
165 |
maximum=MAX_IMAGE_SIZE,
|
166 |
step=32,
|
167 |
-
value=
|
168 |
)
|
169 |
|
170 |
height = gr.Slider(
|
@@ -172,54 +257,35 @@ with gr.Blocks(css=css) as demo:
|
|
172 |
minimum=256,
|
173 |
maximum=MAX_IMAGE_SIZE,
|
174 |
step=32,
|
175 |
-
value=
|
176 |
)
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
minimum=0.0,
|
182 |
-
maximum=20.0,
|
183 |
-
step=0.5,
|
184 |
-
value=7.0,
|
185 |
-
)
|
186 |
-
|
187 |
-
num_inference_steps = gr.Slider(
|
188 |
-
label="Number of inference steps",
|
189 |
-
minimum=1,
|
190 |
-
maximum=100,
|
191 |
-
step=1,
|
192 |
-
value=20,
|
193 |
-
)
|
194 |
-
|
195 |
-
# New slider for LoRA scale.
|
196 |
-
lora_scale = gr.Slider(
|
197 |
-
label="LoRA Scale",
|
198 |
-
minimum=0.0,
|
199 |
-
maximum=2.0,
|
200 |
-
step=0.1,
|
201 |
-
value=1.0,
|
202 |
-
info="Adjust the influence of the LoRA weights",
|
203 |
-
)
|
204 |
-
|
205 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
206 |
gr.on(
|
207 |
-
triggers=[run_button.click
|
208 |
fn=infer,
|
209 |
inputs=[
|
210 |
-
model_id,
|
211 |
prompt,
|
212 |
negative_prompt,
|
213 |
-
seed,
|
214 |
-
randomize_seed,
|
215 |
width,
|
216 |
height,
|
217 |
-
|
|
|
|
|
|
|
218 |
num_inference_steps,
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
],
|
221 |
-
outputs=[result
|
222 |
)
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import os
|
|
|
|
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
|
7 |
+
from diffusers.utils import load_image
|
8 |
+
from peft import PeftModel, LoraConfig
|
9 |
|
|
|
10 |
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
if torch.cuda.is_available():
|
15 |
torch_dtype = torch.float16
|
16 |
else:
|
17 |
torch_dtype = torch.float32
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
+
|
23 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
def infer(
|
|
|
25 |
prompt,
|
26 |
negative_prompt,
|
27 |
+
width=512,
|
28 |
+
height=512,
|
29 |
+
model_id=model_id_default,
|
30 |
+
seed=42,
|
31 |
+
guidance_scale=7.0,
|
32 |
+
lora_scale=1.0,
|
33 |
+
num_inference_steps=20,
|
34 |
+
controlnet_checkbox=False,
|
35 |
+
controlnet_strength=0.0,
|
36 |
+
controlnet_mode="edge_detection",
|
37 |
+
controlnet_image=None,
|
38 |
+
ip_adapter_checkbox=False,
|
39 |
+
ip_adapter_scale=0.0,
|
40 |
+
ip_adapter_image=None,
|
41 |
+
progress=gr.Progress(track_tqdm=True),
|
42 |
+
):
|
43 |
+
|
44 |
+
unet_sub_dir = "unet"
|
45 |
+
text_encoder_sub_dir = "text_encoder"
|
46 |
+
|
47 |
+
if model_id is None:
|
48 |
+
raise ValueError("Please specify the base model name or path")
|
49 |
+
|
50 |
+
generator = torch.Generator(device).manual_seed(seed)
|
51 |
+
params = {'prompt': prompt,
|
52 |
+
'negative_prompt': negative_prompt,
|
53 |
+
'guidance_scale': guidance_scale,
|
54 |
+
'num_inference_steps': num_inference_steps,
|
55 |
+
'width': width,
|
56 |
+
'height': height,
|
57 |
+
'generator': generator
|
58 |
+
}
|
59 |
+
|
60 |
+
if controlnet_checkbox:
|
61 |
+
if controlnet_mode == "depth_map":
|
62 |
+
controlnet = ControlNetModel.from_pretrained(
|
63 |
+
"lllyasviel/sd-controlnet-depth",
|
64 |
+
cache_dir="./models_cache",
|
65 |
+
torch_dtype=torch_dtype
|
66 |
+
)
|
67 |
+
elif controlnet_mode == "pose_estimation":
|
68 |
+
controlnet = ControlNetModel.from_pretrained(
|
69 |
+
"lllyasviel/sd-controlnet-openpose",
|
70 |
+
cache_dir="./models_cache",
|
71 |
+
torch_dtype=torch_dtype
|
72 |
+
)
|
73 |
+
elif controlnet_mode == "normal_map":
|
74 |
+
controlnet = ControlNetModel.from_pretrained(
|
75 |
+
"lllyasviel/sd-controlnet-normal",
|
76 |
+
cache_dir="./models_cache",
|
77 |
+
torch_dtype=torch_dtype
|
78 |
+
)
|
79 |
+
elif controlnet_mode == "scribbles":
|
80 |
+
controlnet = ControlNetModel.from_pretrained(
|
81 |
+
"lllyasviel/sd-controlnet-scribble",
|
82 |
+
cache_dir="./models_cache",
|
83 |
+
torch_dtype=torch_dtype
|
84 |
+
)
|
85 |
else:
|
86 |
+
controlnet = ControlNetModel.from_pretrained(
|
87 |
+
"lllyasviel/sd-controlnet-canny",
|
88 |
+
cache_dir="./models_cache",
|
89 |
+
torch_dtype=torch_dtype
|
90 |
+
)
|
91 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
|
92 |
+
controlnet=controlnet,
|
93 |
+
torch_dtype=torch_dtype,
|
94 |
+
safety_checker=None).to(device)
|
95 |
+
params['image'] = controlnet_image
|
96 |
+
params['controlnet_conditioning_scale'] = float(controlnet_strength)
|
97 |
+
else:
|
98 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
99 |
+
torch_dtype=torch_dtype,
|
100 |
+
safety_checker=None).to(device)
|
101 |
+
|
102 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
103 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
104 |
+
|
105 |
+
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
|
106 |
+
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
|
107 |
+
|
108 |
+
if torch_dtype in (torch.float16, torch.bfloat16):
|
109 |
+
pipe.unet.half()
|
110 |
+
pipe.text_encoder.half()
|
111 |
+
|
112 |
+
if ip_adapter_checkbox:
|
113 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
114 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
115 |
+
params['ip_adapter_image'] = ip_adapter_image
|
116 |
+
|
117 |
+
pipe.to(device)
|
118 |
+
|
119 |
+
return pipe(**params).images[0]
|
120 |
|
121 |
css = """
|
122 |
#col-container {
|
|
|
125 |
}
|
126 |
"""
|
127 |
|
128 |
+
def controlnet_params(show_extra):
|
129 |
+
return gr.update(visible=show_extra)
|
130 |
+
|
131 |
+
with gr.Blocks(css=css, fill_height=True) as demo:
|
132 |
with gr.Column(elem_id="col-container"):
|
133 |
+
gr.Markdown(" # Text-to-Image demo")
|
134 |
|
135 |
with gr.Row():
|
136 |
+
model_id = gr.Textbox(
|
137 |
+
label="Model ID",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
max_lines=1,
|
139 |
+
placeholder="Enter model id",
|
140 |
+
value=model_id_default,
|
141 |
)
|
142 |
|
143 |
+
prompt = gr.Textbox(
|
144 |
+
label="Prompt",
|
145 |
+
max_lines=1,
|
146 |
+
placeholder="Enter your prompt",
|
147 |
+
)
|
148 |
+
|
149 |
+
negative_prompt = gr.Textbox(
|
150 |
+
label="Negative prompt",
|
151 |
+
max_lines=1,
|
152 |
+
placeholder="Enter your negative prompt",
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Row():
|
156 |
+
seed = gr.Number(
|
157 |
label="Seed",
|
158 |
minimum=0,
|
159 |
maximum=MAX_SEED,
|
160 |
step=1,
|
161 |
+
value=42,
|
162 |
+
)
|
163 |
+
|
164 |
+
guidance_scale = gr.Slider(
|
165 |
+
label="Guidance scale",
|
166 |
+
minimum=0.0,
|
167 |
+
maximum=30.0,
|
168 |
+
step=0.1,
|
169 |
+
value=7.0, # Replace with defaults that work for your model
|
170 |
+
)
|
171 |
+
with gr.Row():
|
172 |
+
lora_scale = gr.Slider(
|
173 |
+
label="LoRA scale",
|
174 |
+
minimum=0.0,
|
175 |
+
maximum=1.0,
|
176 |
+
step=0.01,
|
177 |
+
value=1.0,
|
178 |
)
|
179 |
|
180 |
+
num_inference_steps = gr.Slider(
|
181 |
+
label="Number of inference steps",
|
182 |
+
minimum=1,
|
183 |
+
maximum=100,
|
184 |
+
step=1,
|
185 |
+
value=20, # Replace with defaults that work for your model
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
controlnet_checkbox = gr.Checkbox(
|
189 |
+
label="ControlNet",
|
190 |
+
value=False
|
191 |
+
)
|
192 |
+
with gr.Column(visible=False) as controlnet_params:
|
193 |
+
controlnet_strength = gr.Slider(
|
194 |
+
label="ControlNet conditioning scale",
|
195 |
+
minimum=0.0,
|
196 |
+
maximum=1.0,
|
197 |
+
step=0.01,
|
198 |
+
value=1.0,
|
199 |
+
)
|
200 |
+
controlnet_mode = gr.Dropdown(
|
201 |
+
label="ControlNet mode",
|
202 |
+
choices=["edge_detection",
|
203 |
+
"depth_map",
|
204 |
+
"pose_estimation",
|
205 |
+
"normal_map",
|
206 |
+
"scribbles"],
|
207 |
+
value="edge_detection",
|
208 |
+
max_choices=1
|
209 |
+
)
|
210 |
+
controlnet_image = gr.Image(
|
211 |
+
label="ControlNet condition image",
|
212 |
+
type="pil",
|
213 |
+
format="png"
|
214 |
+
)
|
215 |
+
controlnet_checkbox.change(
|
216 |
+
fn=lambda x: gr.Row.update(visible=x),
|
217 |
+
inputs=controlnet_checkbox,
|
218 |
+
outputs=controlnet_params
|
219 |
+
)
|
220 |
|
221 |
+
with gr.Row():
|
222 |
+
ip_adapter_checkbox = gr.Checkbox(
|
223 |
+
label="IPAdapter",
|
224 |
+
value=False
|
225 |
+
)
|
226 |
+
with gr.Column(visible=False) as ip_adapter_params:
|
227 |
+
ip_adapter_scale = gr.Slider(
|
228 |
+
label="IPAdapter scale",
|
229 |
+
minimum=0.0,
|
230 |
+
maximum=1.0,
|
231 |
+
step=0.01,
|
232 |
+
value=1.0,
|
233 |
+
)
|
234 |
+
ip_adapter_image = gr.Image(
|
235 |
+
label="IPAdapter condition image",
|
236 |
+
type="pil"
|
237 |
+
)
|
238 |
+
ip_adapter_checkbox.change(
|
239 |
+
fn=lambda x: gr.Row.update(visible=x),
|
240 |
+
inputs=ip_adapter_checkbox,
|
241 |
+
outputs=ip_adapter_params
|
242 |
+
)
|
243 |
+
|
244 |
+
with gr.Accordion("Optional Settings", open=False):
|
245 |
+
|
246 |
with gr.Row():
|
247 |
width = gr.Slider(
|
248 |
label="Width",
|
249 |
minimum=256,
|
250 |
maximum=MAX_IMAGE_SIZE,
|
251 |
step=32,
|
252 |
+
value=512, # Replace with defaults that work for your model
|
253 |
)
|
254 |
|
255 |
height = gr.Slider(
|
|
|
257 |
minimum=256,
|
258 |
maximum=MAX_IMAGE_SIZE,
|
259 |
step=32,
|
260 |
+
value=512, # Replace with defaults that work for your model
|
261 |
)
|
262 |
+
|
263 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
264 |
+
result = gr.Image(label="Result", show_label=False)
|
265 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
gr.on(
|
267 |
+
triggers=[run_button.click],
|
268 |
fn=infer,
|
269 |
inputs=[
|
|
|
270 |
prompt,
|
271 |
negative_prompt,
|
|
|
|
|
272 |
width,
|
273 |
height,
|
274 |
+
model_id,
|
275 |
+
seed,
|
276 |
+
guidance_scale,
|
277 |
+
lora_scale,
|
278 |
num_inference_steps,
|
279 |
+
controlnet_checkbox,
|
280 |
+
controlnet_strength,
|
281 |
+
controlnet_mode,
|
282 |
+
controlnet_image,
|
283 |
+
ip_adapter_checkbox,
|
284 |
+
ip_adapter_scale,
|
285 |
+
ip_adapter_image,
|
286 |
],
|
287 |
+
outputs=[result],
|
288 |
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
demo.launch()
|