“WadoodAbdul”
added model submission functionality
215aa92
raw
history blame
6.51 kB
import json
import os
import ast
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from src.display.utils import PromptTemplateName
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{
"NCBI" : {
"" : "condition"
},
"CHIA" : {
"" : "condition"
"" : "drug"
"" : "procedure"
"" : "measurement"
},
"BIORED" : {
"" : "condition"
"" : "drug"
"" : "gene"
"" : "gene variant"
},
"BC5CDR" : {
"" : "condition"
"" : "drug"
}
}
"""
def add_new_eval(
model: str,
# base_model: str,
revision: str,
# precision: str,
# weight_type: str,
model_arch: str,
label_normalization_map: str,
gliner_threshold:str,
gliner_tokenizer_bool:str,
prompt_template_name:str,
model_type: str,
):
"""
Saves request if valid else returns the error.
Validity is checked based on -
- model's existence on hub
- necessary info on the model's card
- label normalization is a valid python dict and contains the keys for all datasets
- threshold for gliner is a valid float
"""
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
# precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
model_type = model_type.split(":")[-1].strip()
# Does the model actually exist?
if revision == "":
revision = "main"
# # Is the model on the hub?
# if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
if not model_arch == "GLiNER Encoder":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
else:
if len(list(API.list_models(model_name=model))) !=1:
return styled_error(f'Model "{model}" does not exist on the hub!')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Verify the inference config now
try:
label_normalization_map = ast.literal_eval(label_normalization_map)
except Exception as e:
return styled_error("Please enter a valid json for the labe; normalization map")
inference_config = {
# "model_arch" : model_arch,
"label_normalization_map": label_normalization_map,
}
match model_arch:
case "Encoder":
pass
case "Decoder":
if not prompt_template_name in [prompt_template.value for prompt_template in PromptTemplateName]:
return styled_error("Prompt template name is invalid")
inference_config = {
**inference_config,
"prompt_template_name": prompt_template_name,
}
case "GLiNER Encoder":
try:
gliner_threshold = float(gliner_threshold)
gliner_tokenizer_bool = ast.literal_eval(gliner_tokenizer_bool)
inference_config = {
**inference_config,
"gliner_threshold": gliner_threshold,
"gliner_tokenizer_bool" : gliner_tokenizer_bool
}
except Exception as e:
return styled_error("Please enter a valid float for the threshold")
case _:
return styled_error("Model Architecture is invalid")
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
# "base_model": base_model,
"revision": revision,
# "precision": precision,
# "weight_type": weight_type,
"model_architecture": model_arch,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
"inference_config":inference_config,
}
# Check for duplicate submission
if f"{model}_{revision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted. Add the revision if the model has been updated.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)