Spaces:
Running
Running
| import json | |
| import os | |
| import ast | |
| from datetime import datetime, timezone | |
| from src.display.formatting import styled_error, styled_message, styled_warning | |
| from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
| from src.submission.check_validity import ( | |
| already_submitted_models, | |
| check_model_card, | |
| get_model_size, | |
| is_model_on_hub, | |
| ) | |
| from src.display.utils import PromptTemplateName | |
| REQUESTED_MODELS = None | |
| USERS_TO_SUBMISSION_DATES = None | |
| PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{ | |
| "NCBI" : { | |
| "" : "condition" | |
| }, | |
| "CHIA" : { | |
| "" : "condition" | |
| "" : "drug" | |
| "" : "procedure" | |
| "" : "measurement" | |
| }, | |
| "BIORED" : { | |
| "" : "condition" | |
| "" : "drug" | |
| "" : "gene" | |
| "" : "gene variant" | |
| }, | |
| "BC5CDR" : { | |
| "" : "condition" | |
| "" : "drug" | |
| } | |
| } | |
| """ | |
| def add_new_eval( | |
| model: str, | |
| base_model: str, | |
| revision: str, | |
| model_type: str, | |
| domain_specific: bool, | |
| chat_template: bool, | |
| precision: str, | |
| weight_type: str, | |
| ): | |
| """ | |
| Saves request if valid else returns the error. | |
| Validity is checked based on - | |
| - model's existence on hub | |
| - necessary info on the model's card | |
| - label normalization is a valid python dict and contains the keys for all datasets | |
| - threshold for gliner is a valid float | |
| """ | |
| global REQUESTED_MODELS | |
| global USERS_TO_SUBMISSION_DATES | |
| if not REQUESTED_MODELS: | |
| REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
| if model.startswith("/"): | |
| user_name = "" | |
| model_path = model | |
| private = True | |
| else: | |
| user_name = "" | |
| model_path = model | |
| if "/" in model: | |
| user_name = model.split("/")[0] | |
| model_path = model.split("/")[1] | |
| private = False | |
| # precision = precision.split(" ")[0] | |
| current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
| if model_type is None or model_type == "": | |
| return styled_error("Please select a model type.") | |
| model_type = model_type.split(":")[-1].strip() | |
| # Does the model actually exist? | |
| if revision == "": | |
| revision = "main" | |
| # Is the model on the hub? | |
| if weight_type in ["Delta", "Adapter"]: | |
| base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) | |
| if not base_model_on_hub: | |
| return styled_error(f'Base model "{base_model}" {error}') | |
| if not weight_type == "Adapter": | |
| model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) | |
| if not model_on_hub: | |
| return styled_error(f'Model "{model}" {error}') | |
| # Is the model info correctly filled? | |
| try: | |
| if model.startswith("/"): | |
| model_info = API.model_info(repo_id=model, revision=revision) | |
| model_size = get_model_size(model_info=model_info) | |
| license = model_info.cardData["license"] | |
| modelcard_OK, error_msg = check_model_card(model) | |
| if not modelcard_OK: | |
| return styled_error(error_msg) | |
| likes = model_info.likes | |
| else: | |
| model_size = None | |
| license = None | |
| likes = 0 | |
| except Exception: | |
| return styled_error("Could not get your model information. Please fill it up properly.") | |
| # Verify the inference config now | |
| # try: | |
| # label_normalization_map = ast.literal_eval(label_normalization_map) | |
| # except Exception as e: | |
| # return styled_error("Please enter a valid json for the labe; normalization map") | |
| # inference_config = { | |
| # # "model_arch" : model_arch, | |
| # "label_normalization_map": label_normalization_map, | |
| # } | |
| # Seems good, creating the eval | |
| print("Adding new eval") | |
| eval_entry = { | |
| "model_name": model, | |
| "base_model": base_model, | |
| "revision": revision, | |
| "precision": precision, | |
| "weight_type": weight_type, | |
| "is_domain_specific": domain_specific, | |
| "use_chat_template": chat_template, | |
| "status": { | |
| "closed-ended": "PENDING", | |
| "open-ended": "PENDING", | |
| "med-safety": "PENDING", | |
| "medical-summarization": "PENDING", | |
| "note-generation": "PENDING", | |
| }, | |
| "submitted_time": current_time, | |
| "model_type": model_type, | |
| "likes": likes, | |
| "num_params": model_size, | |
| "license": license, | |
| "private": private, | |
| "slurm_id": None | |
| } | |
| # Check for duplicate submission | |
| if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
| return styled_warning("This model has been already submitted. Add the revision if the model has been updated.") | |
| print("Creating eval file") | |
| OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
| os.makedirs(OUT_DIR, exist_ok=True) | |
| if model_path.startswith("/"): | |
| os.makedirs(f"{OUT_DIR}/{model_path}", exist_ok=True) | |
| out_path = f"{OUT_DIR}/{model_path}_{revision}_{precision}_{weight_type}_eval_request.json" | |
| with open(out_path, "w") as f: | |
| f.write(json.dumps(eval_entry)) | |
| print("Uploading eval file") | |
| API.upload_file( | |
| path_or_fileobj=out_path, | |
| path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1], | |
| repo_id=QUEUE_REPO, | |
| repo_type="dataset", | |
| commit_message=f"Add {model} to eval queue", | |
| ) | |
| # Remove the local file | |
| os.remove(out_path) | |
| return styled_message( | |
| "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
| ) | |