open-notebooklm / app.py
m-ric's picture
m-ric HF Staff
Auto download Palantir essay
e3f6ad9
import queue
import threading
import spaces
import os
import io
import soundfile as sf
import gradio as gr
import numpy as np
import time
import pymupdf
import requests
from pathlib import Path
import torch
from huggingface_hub import InferenceClient
from kokoro import KModel, KPipeline
# -----------------------------------------------------------------------------
# Get default podcast materials, from Daily papers and one download
# -----------------------------------------------------------------------------
from papers import PaperManager
paper_manager = PaperManager()
top_papers = paper_manager.get_top_content()
PODCAST_SUBJECT = list(top_papers.values())[0]
os.makedirs("examples", exist_ok=True)
response = requests.get("https://www.palantir.com/assets/xrfr7uokpv1b/1wtb4LWF7XIuJisnMwH0XW/dc37fdda646a5df6c5b86f695ce990c0/NYT_-_Our_Oppenheimer_Moment-_The_Creation_of_A.I._Weapons.pdf")
with open("examples/Essay_Palantir.pdf", 'wb') as f:
f.write(response.content)
# -----------------------------------------------------------------------------
# LLM that writes the script (unchanged)
# -----------------------------------------------------------------------------
from prompts import SYSTEM_PROMPT
client = InferenceClient(
"meta-llama/Llama-3.3-70B-Instruct",
provider="cerebras",
token=os.getenv("HF_TOKEN"),
)
def generate_podcast_script(subject: str, steering_question: str | None = None) -> str:
"""Ask the LLM for a script of a podcast given by two hosts."""
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": f"""Here is the topic: it's the top trending paper on Hugging Face daily papers today. You will need to analyze it by bringing profound insights.
{subject[:10000]}"""},
]
if steering_question and len(steering_question) > 0:
messages.append({"role": "user", "content": f"You could focus on this question: {steering_question}"})
response = client.chat_completion(
messages,
max_tokens=8156,
)
full_text = response.choices[0].message.content
assert "[JANE]" in full_text
dialogue_start_index = full_text.find("[JANE]")
podcast_text = full_text[dialogue_start_index:]
return podcast_text
# -----------------------------------------------------------------------------
# Kokoro TTS
# -----------------------------------------------------------------------------
CUDA_AVAILABLE = torch.cuda.is_available()
kmodel = KModel(repo_id='hexgrad/Kokoro-82M').to("cuda" if CUDA_AVAILABLE else "cpu").eval()
kpipeline = KPipeline(lang_code="a") # English voices
MALE_VOICE = "am_adam"
FEMALE_VOICE = "af_heart"
# Pre‑warm voices to avoid first‑call latency
for v in (MALE_VOICE, FEMALE_VOICE):
kpipeline.load_voice(v)
@spaces.GPU
def generate_podcast(url: str, pdf_path: str, topic: str):
if pdf_path:
with pymupdf.open(pdf_path) as pdf_doc:
material_text = ""
for page in pdf_doc:
material_text += page.get_text()
elif url:
response = requests.get(f'https://r.jina.ai/{url}')
material_text = response.text
else:
material_text = PODCAST_SUBJECT
# Generate podcast script!
podcast_script = generate_podcast_script(material_text, topic)
lines = [l for l in podcast_script.strip().splitlines() if l.strip()]
pipeline = kpipeline
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
speed = 1.
sr = 24000
for line in lines:
# Expect "[S1] ..." or "[S2] ..."
if line.startswith("[MIKE]"):
pipeline_voice = pipeline_voice_male
voice = MALE_VOICE
utterance = line[len("[MIKE]"):].strip()
elif line.startswith("[JANE]"):
pipeline_voice = pipeline_voice_female
voice = FEMALE_VOICE
utterance = line[len("[JANE]"):].strip()
else: # fallback
pipeline_voice = pipeline_voice_female
voice = FEMALE_VOICE
utterance = line
for _, ps, _ in pipeline(utterance, voice, speed):
t0 = time.time()
ref_s = pipeline_voice[len(ps) - 1]
audio_numpy = kmodel(ps, ref_s, speed).numpy()
yield (sr, audio_numpy)
t1 = time.time()
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}")
EXAMPLES = [
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
[None, str(Path("examples/Essay_Palantir.pdf")), "Make sure to keep some critic spirit in the analysis!"],
]
demo = gr.Interface(
title="Open NotebookLM 🎙️",
description=f"""Generates a podcast discussion between two hosts about the materials of your choice.
If you do not specify any source materials below, the podcast will be about the top trending [Daily paper](https://huggingface.co/papers/), '**{list(top_papers.keys())[0]}**'
Based on [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M), lightning-fast inference for [Llama-3.3-70B](meta-llama/Llama-3.3-70B-Instruct) by Cerebras, and uses elements from a NotebookLM app by [Gabriel Chua](https://huggingface.co/spaces/gabrielchua/open-notebooklm).""",
fn=generate_podcast,
inputs=[
gr.Textbox(
label="🔗 Type a Webpage URL to discuss it (Optional)",
placeholder="The URL you want to discuss the content for.",
),
gr.File(
label="Upload a PDF as discussion material (Optional)",
file_types=[".pdf"],
file_count="single",
),
gr.Textbox(label="🤔 Do you have a more specific topic or question on the materials?", placeholder="You can leave this blank."),
],
outputs=[
gr.Audio(
label="Listen to your podcast! 🔊",
format="wav",
streaming=True,
),
],
theme=gr.themes.Soft(),
submit_btn="Generate podcast 🎙️",
# clear_btn=gr.Button("🗑️"),
examples=EXAMPLES,
cache_examples=True,
)
if __name__ == "__main__":
demo.launch()