A-Roucher
commited on
Commit
•
beda96a
1
Parent(s):
b19e82a
feat: new faiss index
Browse files
app.py
CHANGED
@@ -2,50 +2,34 @@ import streamlit as st
|
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import datasets
|
4 |
import faiss
|
5 |
-
import torch
|
6 |
-
from sentence_transformers.util import semantic_search
|
7 |
import time
|
|
|
8 |
|
9 |
|
10 |
if "initialized" not in st.session_state:
|
11 |
st.session_state.dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")['train']
|
12 |
st.session_state.all_authors = list(set(st.session_state.dataset['author']))
|
13 |
-
model_name = "
|
14 |
st.session_state.encoder = SentenceTransformer(model_name)
|
15 |
-
st.session_state.
|
16 |
-
st.session_state.dataset["quote"],
|
17 |
-
batch_size=4,
|
18 |
-
show_progress_bar=True,
|
19 |
-
convert_to_numpy=True,
|
20 |
-
normalize_embeddings=True,
|
21 |
-
)
|
22 |
st.session_state.initialized=True
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
sentence = "Knowledge of history is power."
|
27 |
-
|
28 |
-
def search(query, selected_authors):
|
29 |
start = time.time()
|
30 |
if len(query.strip()) == 0:
|
31 |
return ""
|
32 |
|
33 |
query_embedding = st.session_state.encoder.encode([query])
|
34 |
-
sentence_embedding_tensor = torch.Tensor(query_embedding)
|
35 |
-
|
36 |
-
if len(selected_authors) == 0:
|
37 |
-
author_indexes = [i for i in range(len(st.session_state.dataset))]
|
38 |
-
else:
|
39 |
-
author_indexes = [i for i in range(len(st.session_state.dataset)) if st.session_state.dataset['author'][i] in selected_authors]
|
40 |
-
hits = semantic_search(sentence_embedding_tensor, dataset_embeddings_tensor[author_indexes, :], top_k=5)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
result = "\n\n"
|
47 |
-
for i in
|
48 |
-
result += f"###### {
|
|
|
49 |
delay = "%.3f" % (time.time() - start)
|
50 |
return f"_Computation time: **{delay} seconds**_{result}"
|
51 |
|
@@ -61,10 +45,9 @@ st.markdown(
|
|
61 |
""",unsafe_allow_html=True
|
62 |
)
|
63 |
col1, col2 = st.columns([8, 2])
|
64 |
-
text_input = col1.text_input("Type your idea here:")
|
65 |
submit_button = col2.button("_Search quotes!_")
|
66 |
-
selected_authors = st.multiselect("(Optional) - Restrict search to these authors:", st.session_state.all_authors)
|
67 |
|
68 |
if submit_button:
|
69 |
-
st.markdown(search(text_input
|
70 |
|
|
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import datasets
|
4 |
import faiss
|
|
|
|
|
5 |
import time
|
6 |
+
import faiss
|
7 |
|
8 |
|
9 |
if "initialized" not in st.session_state:
|
10 |
st.session_state.dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")['train']
|
11 |
st.session_state.all_authors = list(set(st.session_state.dataset['author']))
|
12 |
+
model_name = "BAAI/bge-small-en-v1.5" # "sentence-transformers/all-MiniLM-L6-v2" # # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
st.session_state.encoder = SentenceTransformer(model_name)
|
14 |
+
st.session_state.index = faiss.read_index('index_alone.faiss')
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
st.session_state.initialized=True
|
16 |
|
17 |
+
def search(query):
|
|
|
|
|
|
|
|
|
18 |
start = time.time()
|
19 |
if len(query.strip()) == 0:
|
20 |
return ""
|
21 |
|
22 |
query_embedding = st.session_state.encoder.encode([query])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
_, samples = st.session_state.index.search(
|
25 |
+
query_embedding, k=10
|
26 |
+
)
|
27 |
+
quotes = st.session_state.dataset.select(samples[0])
|
28 |
+
|
29 |
result = "\n\n"
|
30 |
+
for i in range(len(quotes)):
|
31 |
+
result += f"###### {quotes['author'][i]}\n> {quotes['quote'][i]}\n----\n"
|
32 |
+
|
33 |
delay = "%.3f" % (time.time() - start)
|
34 |
return f"_Computation time: **{delay} seconds**_{result}"
|
35 |
|
|
|
45 |
""",unsafe_allow_html=True
|
46 |
)
|
47 |
col1, col2 = st.columns([8, 2])
|
48 |
+
text_input = col1.text_input("Type your idea here:", placeholder="Knowledge of history is power.")
|
49 |
submit_button = col2.button("_Search quotes!_")
|
|
|
50 |
|
51 |
if submit_button:
|
52 |
+
st.markdown(search(text_input))
|
53 |
|