space / app.py
lz-12's picture
Update app.py
d053244 verified
import gradio as gr
from transformers import pipeline
# 加载模型
print("正在加载病理检测NER模型...")
ner = pipeline(
"token-classification",
model="OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M",
aggregation_strategy="max"
)
print("模型加载完成!")
# 处理函数
def process_text(text):
if not text:
return "请输入医学文本"
results = ner(text)
output = ""
for result in results:
entity = result["entity_group"]
word = result["word"]
score = round(result["score"], 2)
output += f"检测到病理实体: {word} (类型: {entity}, 置信度: {score})\n"
if not output:
output = "未检测到任何病理相关实体"
return output
# 创建界面
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(placeholder="请输入医学文本...", lines=5),
outputs="text",
title="OpenMed 病理检测 NER 模型演示",
description="使用OpenMed-NER-PathologyDetect-BigMed-560M模型识别文本中的病理实体"
)
# 启动服务
demo.launch()