|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
print("正在加载病理检测NER模型...") |
|
ner = pipeline( |
|
"token-classification", |
|
model="OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M", |
|
aggregation_strategy="max" |
|
) |
|
print("模型加载完成!") |
|
|
|
|
|
def process_text(text): |
|
if not text: |
|
return "请输入医学文本" |
|
|
|
results = ner(text) |
|
output = "" |
|
|
|
for result in results: |
|
entity = result["entity_group"] |
|
word = result["word"] |
|
score = round(result["score"], 2) |
|
output += f"检测到病理实体: {word} (类型: {entity}, 置信度: {score})\n" |
|
|
|
if not output: |
|
output = "未检测到任何病理相关实体" |
|
|
|
return output |
|
|
|
|
|
demo = gr.Interface( |
|
fn=process_text, |
|
inputs=gr.Textbox(placeholder="请输入医学文本...", lines=5), |
|
outputs="text", |
|
title="OpenMed 病理检测 NER 模型演示", |
|
description="使用OpenMed-NER-PathologyDetect-BigMed-560M模型识别文本中的病理实体" |
|
) |
|
|
|
|
|
demo.launch() |