lynxkite / examples /Cheminformatics /Neural QSAR Model.lynxkite.json
darabos's picture
Rename Cheminfo workspaces to have pretty names.
77be113
raw
history blame
89.8 kB
{
"edges": [
{
"id": "Model inference 1 View vectors 1",
"source": "Model inference 1",
"sourceHandle": "output",
"target": "View vectors 1",
"targetHandle": "bundle"
},
{
"id": "Import Parquet 2 output Train/test split 2 bundle",
"source": "Import Parquet 2",
"sourceHandle": "output",
"target": "Train/test split 2",
"targetHandle": "bundle"
},
{
"id": "Train/test split 2 output Define model 2 bundle",
"source": "Train/test split 2",
"sourceHandle": "output",
"target": "Define model 2",
"targetHandle": "bundle"
},
{
"id": "Define model 2 output Train model 1 bundle",
"source": "Define model 2",
"sourceHandle": "output",
"target": "Train model 1",
"targetHandle": "bundle"
},
{
"id": "Train model 1 output View loss 1 bundle",
"source": "Train model 1",
"sourceHandle": "output",
"target": "View loss 1",
"targetHandle": "bundle"
},
{
"id": "Train model 1 output Model inference 1 bundle",
"source": "Train model 1",
"sourceHandle": "output",
"target": "Model inference 1",
"targetHandle": "bundle"
},
{
"id": "Model inference 1 output View tables 1 bundle",
"source": "Model inference 1",
"sourceHandle": "output",
"target": "View tables 1",
"targetHandle": "bundle"
}
],
"env": "LynxKite Graph Analytics",
"nodes": [
{
"_data": {
"__execution_delay": 0.0,
"collapsed": null,
"display": null,
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"x",
"y"
]
},
"df_train": {
"columns": [
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Output_1_x",
"Input__tensor_3_output"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"inputs": {
"bundle": {
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
},
"name": "Model inference",
"outputs": {
"output": {
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
},
"params": {
"input_mapping": {
"default": null,
"name": "input_mapping",
"type": {
"type": "<class 'lynxkite_graph_analytics.lynxkite_ops.ModelInferenceInputMapping'>"
}
},
"model_name": {
"default": "model",
"name": "model_name",
"type": {
"type": "<class 'str'>"
}
},
"output_mapping": {
"default": null,
"name": "output_mapping",
"type": {
"type": "<class 'lynxkite_graph_analytics.lynxkite_ops.ModelOutputMapping'>"
}
}
},
"type": "basic"
},
"params": {
"input_mapping": "{\"map\":{\"Input__tensor_1_output\":{\"df\":\"df_test\",\"column\":\"x\"}}}",
"model_name": "model",
"output_mapping": "{\"map\":{\"Output_1_x\":{\"df\":\"df_test\",\"column\":\"pred\"}}}"
},
"status": "done",
"title": "Model inference"
},
"data": {
"__execution_delay": 0.0,
"collapsed": null,
"display": null,
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Input__tensor_3_output",
"Output_1_x"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": [
{
"kind": "text",
"value": "Executes a trained model."
}
],
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "Model inference",
"outputs": [
{
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
],
"params": [
{
"default": "model",
"name": "model_name",
"type": {
"type": "<class 'str'>"
}
},
{
"default": null,
"name": "input_mapping",
"type": {
"type": "<class 'lynxkite_graph_analytics.ml_ops.ModelInferenceInputMapping'>"
}
},
{
"default": null,
"name": "output_mapping",
"type": {
"type": "<class 'lynxkite_graph_analytics.ml_ops.ModelOutputMapping'>"
}
}
],
"type": "basic"
},
"params": {
"input_mapping": "{\"map\":{\"Input__tensor_1_output\":{\"df\":\"df_test\",\"column\":\"x\"}}}",
"model_name": "model",
"output_mapping": "{\"map\":{\"Output_1_x\":{\"df\":\"df_test\",\"column\":\"pred\"}}}"
},
"status": "done",
"title": "Model inference"
},
"dragHandle": ".bg-primary",
"height": 362.0,
"id": "Model inference 1",
"position": {
"x": 1819.9055941495726,
"y": -172.25483582354178
},
"type": "basic",
"width": 563.0
},
{
"_data": {
"__execution_delay": null,
"collapsed": false,
"display": {
"series": [
{
"data": [
5.194248676300049,
4.732226848602295,
4.301504611968994,
3.9289824962615967,
3.6416826248168945,
3.4493889808654785,
3.339247703552246,
3.2848846912384033,
3.2611656188964844,
3.251643180847168,
3.2479231357574463,
3.2463886737823486,
3.245635986328125,
3.245159149169922,
3.2447798252105713,
3.2444353103637695,
3.2441060543060303,
3.2437832355499268,
3.243464469909668,
3.243149518966675,
3.2428362369537354,
3.242525339126587,
3.2422165870666504,
3.241910457611084,
3.2416069507598877,
3.2413055896759033,
3.2410058975219727,
3.240708112716675,
3.2404117584228516,
3.2401177883148193,
3.239825487136841,
3.239534616470337,
3.239245653152466,
3.2389581203460693,
3.238672971725464,
3.238389015197754,
3.2381069660186768,
3.237826108932495,
3.2375471591949463,
3.237269878387451,
3.2369940280914307,
3.236720085144043,
3.2364470958709717,
3.236175775527954,
3.2359063625335693,
3.2356388568878174,
3.235372304916382,
3.235107183456421,
3.2348432540893555,
3.234581232070923,
3.2343204021453857,
3.2340610027313232,
3.233802556991577,
3.233546257019043,
3.233290910720825,
3.233036518096924,
3.2327840328216553,
3.2325327396392822,
3.232283115386963,
3.232034921646118,
3.2317872047424316,
3.2315409183502197,
3.2312965393066406,
3.231052875518799,
3.2308101654052734,
3.2305691242218018,
3.2303292751312256,
3.230090379714966,
3.2298526763916016,
3.2296159267425537,
3.2293803691864014,
3.2291462421417236,
3.228912591934204,
3.2286808490753174,
3.228449821472168,
3.228219985961914,
3.2279903888702393,
3.2277631759643555,
3.22753643989563,
3.2273104190826416,
3.2270853519439697,
3.2268614768981934,
3.226637363433838,
3.2264153957366943,
3.2261929512023926,
3.2259714603424072,
3.2257511615753174,
3.2255313396453857,
3.2253129482269287,
3.225095272064209,
3.224879264831543,
3.224663734436035,
3.2244486808776855,
3.2242350578308105,
3.224022388458252,
3.223810911178589,
3.223599672317505,
3.2233896255493164,
3.2231807708740234,
3.2229726314544678,
3.222764730453491,
3.2225584983825684,
3.2223527431488037,
3.2221477031707764,
3.2219433784484863,
3.2217350006103516,
3.2210605144500732,
3.2179861068725586,
3.1490979194641113,
2.5611555576324463,
2.1667709350585938,
1.941397786140442,
1.8211313486099243,
1.7602094411849976,
1.7300406694412231,
1.7150671482086182,
1.707504153251648,
1.703554630279541,
1.7013800144195557,
1.7000809907913208,
1.6992148160934448,
1.6985713243484497,
1.6980407238006592,
1.6975696086883545,
1.6971304416656494,
1.69670832157135,
1.696295976638794,
1.6958922147750854,
1.6954957246780396,
1.6951044797897339,
1.6947181224822998,
1.694334626197815,
1.6939517259597778,
1.6935737133026123,
1.6931995153427124,
1.6928293704986572,
1.6924631595611572,
1.6921008825302124,
1.6917426586151123,
1.6913865804672241,
1.6910340785980225,
1.690685510635376,
1.690340518951416,
1.6899985074996948,
1.689659595489502,
1.6893242597579956,
1.6889920234680176,
1.6886632442474365,
1.688332438468933,
1.6879974603652954,
1.6876615285873413,
1.687328815460205,
1.6869547367095947,
1.6862459182739258,
1.6816266775131226,
1.5337661504745483,
0.8366889357566833,
0.46365517377853394,
0.2645129859447479,
0.16432315111160278,
0.11595670133829117,
0.09297489374876022,
0.08202926814556122,
0.07672866433858871,
0.07407510280609131,
0.07266353815793991,
0.07183551043272018,
0.07128453254699707,
0.07086450606584549,
0.07050899416208267,
0.0701858326792717,
0.06987988203763962,
0.0695839673280716,
0.06929467618465424,
0.06901033222675323,
0.0687265694141388,
0.0684463381767273,
0.06816895306110382,
0.06789495050907135,
0.0676238089799881,
0.06735056638717651,
0.06708052009344101,
0.06681209057569504,
0.06654231995344162,
0.06627301871776581,
0.06600192189216614,
0.06573258340358734,
0.06545879691839218,
0.06518517434597015,
0.06490959227085114,
0.06463567167520523,
0.0643647089600563,
0.06409519165754318,
0.06382837891578674,
0.06356203556060791,
0.06330081075429916,
0.06304193288087845,
0.06278356909751892,
0.06252720952033997,
0.06227334961295128,
0.06202361360192299,
0.0617777444422245,
0.06153156980872154,
0.061283886432647705,
0.061029158532619476,
0.06077418848872185,
0.060523588210344315,
0.06027815118432045,
0.06003476679325104,
0.059792377054691315,
0.059549830853939056,
0.05930154025554657,
0.05905551835894585,
0.05881192907691002,
0.0585709884762764,
0.05833115428686142,
0.05809348449110985,
0.0578579381108284,
0.05762450024485588,
0.05739405006170273,
0.05716623365879059,
0.056934017688035965,
0.05670491233468056,
0.05647972598671913,
0.05625642091035843,
0.05603497847914696,
0.05581538379192352,
0.05559813603758812,
0.05538330227136612,
0.055170174688100815,
0.054959800094366074,
0.05475304275751114,
0.054547909647226334,
0.05434436723589897,
0.05414241552352905,
0.053942013531923294,
0.053743164986371994,
0.05354584753513336,
0.05335003510117531,
0.05315623804926872,
0.05296580120921135,
0.052776746451854706,
0.052589051425457,
0.05240271985530853,
0.05221769958734512,
0.05203401669859886,
0.05185163766145706,
0.05167055502533913,
0.05149075761437416,
0.05131221190094948,
0.051134925335645676,
0.05095922574400902,
0.05078546702861786,
0.05061294883489609,
0.05044237896800041,
0.050274644047021866,
0.05010804161429405,
0.04994256794452667,
0.049778200685977936,
0.04961492121219635,
0.049452755600214005,
0.04929284378886223,
0.04913467913866043,
0.04897753894329071,
0.04882141575217247,
0.04866630584001541,
0.04851251095533371,
0.04836169257760048,
0.04821375384926796,
0.04806669428944588,
0.04792052507400513,
0.04777522012591362,
0.04763077199459076,
0.04748716205358505,
0.047344379127025604,
0.04720241203904152,
0.04706142097711563,
0.04692186415195465,
0.04678306728601456,
0.04664503037929535,
0.04650787264108658,
0.04637163504958153,
0.046236440539360046,
0.04610292613506317,
0.04597007483243942,
0.045837946236133575,
0.04570755362510681,
0.04557782784104347,
0.04544825479388237,
0.0453183650970459,
0.045189570635557175,
0.04506213217973709,
0.04493529349565506,
0.044809043407440186,
0.044683389365673065,
0.04455830156803131,
0.04443386197090149,
0.04431009292602539,
0.04418685659766197,
0.04406414180994034,
0.043941959738731384,
0.043820276856422424,
0.04369909688830376,
0.043578337877988815,
0.04345747083425522,
0.04333708435297012,
0.04321715980768204,
0.04309769719839096,
0.0429786778986454,
0.04286010563373566,
0.04274197295308113,
0.042624276131391525,
0.042507000267505646,
0.04239014536142349,
0.04227370768785477,
0.042157672345638275,
0.042042046785354614,
0.04192682355642319,
0.0418119840323925,
0.041697535663843155,
0.04158347100019455,
0.04146978259086609,
0.041356466710567474,
0.041243527084589005,
0.041130952537059784,
0.04101872816681862,
0.040906865149736404,
0.04079534858465195,
0.04068418964743614,
0.0405733622610569,
0.040462885051965714,
0.04035273939371109,
0.04024292156100273,
0.040133725851774216,
0.040025271475315094,
0.03991713374853134,
0.03980930522084236,
0.039701659232378006,
0.039593927562236786,
0.039486486464738846,
0.03937936946749687,
0.039272651076316833,
0.039166223257780075,
0.039060063660144806,
0.038954153656959534,
0.0388483963906765,
0.038742903620004654,
0.0386376827955246,
0.03853272274136543,
0.03842802718281746,
0.03832358866930008,
0.03821941092610359,
0.0381154865026474,
0.038011811673641205,
0.0379084013402462,
0.037805236876010895,
0.03770232945680618,
0.03759966045618057,
0.037497248500585556,
0.03739452734589577,
0.03729122132062912,
0.03718816488981247,
0.03708536550402641,
0.03698281571269035,
0.03688051551580429,
0.036778464913368225,
0.03667666018009186,
0.03657510131597519,
0.03647379204630852,
0.036372724920511246,
0.03627190366387367,
0.036171332001686096,
0.036071084439754486,
0.03597136586904526,
0.03587188571691513,
0.03577264025807381,
0.035673633217811584,
0.03557485342025757,
0.03547630459070206,
0.03537798300385475,
0.035279903560876846,
0.035182058811187744,
0.03508443757891655,
0.03498705103993416,
0.034889888018369675,
0.034792978316545486,
0.03469628840684891,
0.03459983691573143,
0.034503620117902756,
0.034407634288072586,
0.03431188315153122,
0.034216366708278656,
0.0341210775077343,
0.03402603417634964,
0.033931225538253784,
0.03383665531873703,
0.03374231979250908,
0.03364821895956993,
0.033554356545209885,
0.03346073254942894,
0.03336735814809799,
0.033274225890636444,
0.0331813283264637,
0.03308868035674095,
0.03299626335501671,
0.03290409594774246,
0.032812174409627914,
0.032720498740673065,
0.032629065215587616,
0.03253787383437157,
0.03244693577289581,
0.03235623985528946,
0.032265804708004,
0.03217560797929764,
0.03208566829562187,
0.03199596703052521,
0.03190653398633003,
0.031817350536584854,
0.031728409230709076,
0.03163974732160568,
0.03155132010579109,
0.03146316111087799,
0.03137525916099548,
0.03128761053085327,
0.031200233846902847,
0.03111310862004757,
0.031026242300868034,
0.030939649790525436,
0.030853310599923134,
0.030767245218157768,
0.030681440606713295,
0.03059590980410576,
0.030510643497109413,
0.03042564168572426,
0.030340921133756638,
0.03025646135210991,
0.030172280967235565,
0.03008836880326271,
0.030004747211933136,
0.029921378940343857,
0.029838303104043007,
0.029755493625998497,
0.029672972857952118,
0.029590733349323273,
0.029508762061595917,
0.029427088797092438,
0.029345687478780746,
0.029264571145176888,
0.02918374352157116,
0.029103199020028114,
0.02902294509112835,
0.028942979872226715,
0.028863299638032913,
0.02878391183912754,
0.02870481088757515,
0.028626007959246635,
0.028547491878271103,
0.028469275683164597,
0.02839135006070137,
0.02831372618675232,
0.02823638916015625,
0.028159350156784058,
0.02808261476457119,
0.0280061773955822,
0.027930041775107384,
0.027854204177856445,
0.027778668329119682,
0.027703437954187393,
0.02762851119041443,
0.02755388431251049,
0.027479562908411026,
0.027405548840761185,
0.027331842109560966,
0.027258435264229774,
0.02718534506857395,
0.027112558484077454,
0.02704007923603058,
0.026967914775013924,
0.026896055787801743,
0.02682451158761978,
0.026753274723887444,
0.026682356372475624,
0.02661174349486828,
0.0265414509922266,
0.026471465826034546,
0.02640179730951786,
0.026332441717386246,
0.0262634065002203,
0.026194684207439423,
0.026126278564333916,
0.02605818584561348,
0.025990411639213562,
0.025922955945134163,
0.025855818763375282,
0.02578899636864662,
0.025722496211528778,
0.025656312704086304,
0.02559044398367405,
0.02552489936351776,
0.02545967325568199,
0.02539476379752159
],
"type": "line"
}
],
"title": {
"text": "Training loss"
},
"xAxis": {
"type": "category"
},
"yAxis": {
"type": "value"
}
},
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"x",
"y"
]
},
"df_train": {
"columns": [
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Output_1_x",
"Input__tensor_3_output"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"inputs": {
"bundle": {
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
},
"name": "View loss",
"outputs": {},
"params": {},
"type": "visualization"
},
"params": {},
"status": "done",
"title": "View loss"
},
"data": {
"__execution_delay": null,
"collapsed": false,
"display": {
"series": [
{
"data": [
67.413818359375,
67.11187744140625,
66.81317901611328,
66.5162353515625,
66.21949768066406,
65.92274475097656,
65.62549591064453,
65.32546997070312,
65.02108764648438,
64.71121978759766,
64.39421081542969,
64.06808471679688,
63.73294448852539,
63.3873405456543,
63.02961730957031,
62.65884017944336,
62.27304458618164,
61.87138366699219,
61.452850341796875,
61.01667404174805,
60.56078338623047,
60.08305740356445,
59.582435607910156,
59.05806350708008,
58.50962829589844,
57.935184478759766,
57.33393096923828,
56.705013275146484,
56.0476188659668,
55.360347747802734,
54.6429443359375,
53.89464569091797,
53.113922119140625,
52.30055618286133,
51.4543571472168,
50.57438278198242,
49.660362243652344,
48.712093353271484,
47.72883224487305,
46.7108039855957,
45.65839767456055,
44.572303771972656,
43.45291519165039,
42.30076217651367,
41.11710739135742,
39.90336990356445,
38.66173553466797,
37.39354705810547,
36.100341796875,
34.78422546386719,
33.44749450683594,
32.092674255371094,
30.722511291503906,
29.340362548828125,
27.94980239868164,
26.553958892822266,
25.156696319580078,
23.762224197387695,
22.374366760253906,
20.997533798217773,
19.63677978515625,
18.296897888183594,
16.982328414916992,
15.697725296020508,
14.44817066192627,
13.238905906677246,
12.074806213378906,
10.960868835449219,
9.901790618896484,
8.901801109313965,
7.964723110198975,
7.09385347366333,
6.291915416717529,
5.561134338378906,
4.903149127960205,
4.318702220916748,
3.808044672012329,
3.370572566986084,
3.004401922225952,
2.706446886062622,
2.472712278366089,
2.2981722354888916,
2.176875591278076,
2.102105140686035,
2.066572666168213,
2.0626060962677,
2.082454204559326,
2.1185786724090576,
2.163982629776001,
2.212440252304077,
2.2587029933929443,
2.298664093017578,
2.3294262886047363,
2.349210023880005,
2.3572983741760254,
2.353860855102539,
2.339801073074341,
2.3165128231048584,
2.285783290863037,
2.2495362758636475,
2.209678888320923,
2.1679699420928955,
2.1260528564453125,
2.0852770805358887,
2.046765089035034,
2.0113227367401123,
1.9795072078704834,
1.951624870300293,
1.9277347326278687,
1.9077317714691162,
1.8913639783859253,
1.8782825469970703,
1.8680652379989624,
1.860246181488037,
1.8543577194213867,
1.8499524593353271,
1.8466061353683472,
1.8439419269561768,
1.841636061668396,
1.8394237756729126,
1.8370988368988037,
1.8345081806182861,
1.8315527439117432,
1.8281805515289307,
1.824377179145813,
1.82016122341156,
1.815576195716858,
1.8106868267059326,
1.8055685758590698,
1.8002979755401611,
1.794956088066101,
1.789618968963623,
1.7843579053878784,
1.7792333364486694,
1.7742924690246582,
1.7695715427398682,
1.7650917768478394,
1.7608625888824463,
1.7568891048431396,
1.7531644105911255,
1.7496731281280518,
1.7463945150375366,
1.74330472946167,
1.74037504196167,
1.7375787496566772,
1.7348928451538086,
1.7322945594787598,
1.7297621965408325,
1.7272769212722778,
1.724826455116272,
1.7223998308181763,
1.7199890613555908,
1.717591404914856,
1.7152045965194702,
1.7128314971923828,
1.7104763984680176,
1.7081413269042969,
1.7058302164077759,
1.7035484313964844,
1.7013014554977417,
1.6990923881530762,
1.6969245672225952,
1.6948007345199585,
1.6927225589752197,
1.6906906366348267,
1.688704490661621,
1.686761498451233,
1.6848597526550293,
1.6829967498779297,
1.6811716556549072,
1.6793829202651978,
1.6776278018951416,
1.675904393196106,
1.6742106676101685,
1.6725448369979858,
1.6709049940109253,
1.66929030418396,
1.6676996946334839,
1.6661325693130493,
1.6645885705947876,
1.6630669832229614,
1.661568284034729,
1.6600923538208008,
1.658638834953308,
1.6572073698043823,
1.6558005809783936,
1.6544150114059448,
1.6530519723892212,
1.651710867881775,
1.6503913402557373,
1.6490938663482666,
1.6478174924850464,
1.6465617418289185,
1.6453264951705933,
1.6441117525100708,
1.6429158449172974,
1.6417392492294312,
1.6405810117721558,
1.6394413709640503,
1.6383187770843506,
1.6372123956680298,
1.6361225843429565,
1.6350492238998413,
1.6339921951293945,
1.6329513788223267,
1.6319255828857422,
1.6309150457382202,
1.6299195289611816,
1.628938913345337,
1.6279730796813965,
1.6270231008529663,
1.6260874271392822,
1.6251659393310547,
1.6242592334747314,
1.6233665943145752,
1.6224875450134277,
1.6216225624084473,
1.6207715272903442,
1.6199339628219604,
1.6191091537475586,
1.6182971000671387,
1.6174976825714111,
1.6167107820510864,
1.615936279296875,
1.61517333984375,
1.6144218444824219,
1.6136815547943115,
1.6129528284072876,
1.6122353076934814,
1.6115286350250244,
1.6108324527740479,
1.6101465225219727,
1.6094708442687988,
1.6088050603866577,
1.608149766921997,
1.6075048446655273,
1.606868863105774,
1.6062421798706055,
1.6056252717971802,
1.6050169467926025,
1.6044166088104248,
1.6038252115249634,
1.60324227809906,
1.6026668548583984,
1.602098822593689,
1.6015381813049316,
1.6009854078292847,
1.6004407405853271,
1.5999033451080322,
1.5993733406066895,
1.5988502502441406,
1.5983350276947021,
1.597826600074768,
1.5973247289657593,
1.5968282222747803,
1.5963387489318848,
1.595855712890625,
1.595379114151001,
1.5949088335037231,
1.5944451093673706,
1.5939875841140747,
1.5935362577438354,
1.5930910110473633,
1.5926523208618164,
1.592220425605774,
1.5917949676513672,
1.591375708580017,
1.5909618139266968,
1.5905537605285645,
1.590151309967041,
1.5897539854049683,
1.5893620252609253,
1.588975191116333,
1.5885939598083496,
1.5882179737091064,
1.5878467559814453,
1.5874805450439453,
1.5871191024780273,
1.5867624282836914,
1.5864101648330688,
1.5860624313354492,
1.5857192277908325,
1.5853806734085083,
1.5850470066070557,
1.5847175121307373,
1.5843925476074219,
1.584071397781372,
1.5837541818618774,
1.5834412574768066,
1.583132028579712,
1.5828267335891724,
1.5825252532958984,
1.5822274684906006,
1.5819330215454102,
1.5816423892974854,
1.5813556909561157,
1.581072211265564,
1.5807920694351196,
1.5805152654647827,
1.5802420377731323
],
"type": "line"
}
],
"title": {
"text": "Training loss"
},
"xAxis": {
"type": "category"
},
"yAxis": {
"type": "value"
}
},
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Input__tensor_3_output",
"Output_1_x"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": null,
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "View loss",
"outputs": [],
"params": [],
"type": "visualization"
},
"params": {},
"status": "done",
"title": "View loss"
},
"dragHandle": ".bg-primary",
"height": 377.0,
"id": "View loss 1",
"position": {
"x": 1902.9286089170223,
"y": 350.7369834103349
},
"type": "visualization",
"width": 411.0
},
{
"data": {
"__execution_delay": 0.0,
"collapsed": null,
"display": null,
"error": "'pred'",
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"pred",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Input__tensor_3_output",
"Output_1_x"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": null,
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "View vectors",
"outputs": [],
"params": [
{
"default": "nodes",
"name": "table_name",
"type": {
"type": "<class 'str'>"
}
},
{
"default": "",
"name": "vector_column",
"type": {
"type": "<class 'str'>"
}
},
{
"default": "",
"name": "label_column",
"type": {
"type": "<class 'str'>"
}
},
{
"default": 15,
"name": "n_neighbors",
"type": {
"type": "<class 'int'>"
}
},
{
"default": 0.1,
"name": "min_dist",
"type": {
"type": "<class 'float'>"
}
},
{
"default": "euclidean",
"name": "metric",
"type": {
"enum": [
"l1",
"cityblock",
"taxicab",
"manhattan",
"euclidean",
"l2",
"sqeuclidean",
"canberra",
"minkowski",
"chebyshev",
"linf",
"cosine",
"correlation",
"hellinger",
"hamming"
]
}
}
],
"type": "visualization"
},
"params": {
"label_column": "pred",
"metric": "l2",
"min_dist": "1",
"n_neighbors": "5",
"table_name": "df_train",
"vector_column": "pred"
},
"status": "done",
"title": "View vectors"
},
"dragHandle": ".bg-primary",
"height": 516.0,
"id": "View vectors 1",
"position": {
"x": 2651.591372715985,
"y": 233.4416247956355
},
"type": "visualization",
"width": 614.0
},
{
"data": {
"__execution_delay": 0.0,
"collapsed": false,
"display": null,
"error": null,
"input_metadata": [],
"meta": {
"color": "orange",
"doc": [
{
"kind": "text",
"value": "Imports a Parquet file."
}
],
"inputs": [],
"name": "Import Parquet",
"outputs": [
{
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
],
"params": [
{
"default": null,
"name": "filename",
"type": {
"type": "<class 'str'>"
}
}
],
"type": "basic"
},
"params": {
"filename": "~/Github/lynxkite-2024/examples/uploads/CHEMBL313_descriptors.parquet"
},
"status": "done",
"title": "Import Parquet"
},
"dragHandle": ".bg-primary",
"height": 247.0,
"id": "Import Parquet 2",
"position": {
"x": -819.7203556692056,
"y": -102.01002572829246
},
"type": "basic",
"width": 479.0
},
{
"data": {
"__execution_delay": 0.0,
"collapsed": null,
"display": null,
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
}
},
"other": {},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": [
{
"kind": "text",
"value": "Splits a dataframe in the bundle into separate \"_train\" and \"_test\" dataframes."
}
],
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "Train/test split",
"outputs": [
{
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
],
"params": [
{
"default": null,
"name": "table_name",
"type": {
"type": "<class 'str'>"
}
},
{
"default": 0.1,
"name": "test_ratio",
"type": {
"type": "<class 'float'>"
}
}
],
"type": "basic"
},
"params": {
"table_name": "df",
"test_ratio": "0.2"
},
"status": "done",
"title": "Train/test split"
},
"dragHandle": ".bg-primary",
"height": 291.0,
"id": "Train/test split 2",
"position": {
"x": -228.55968883824875,
"y": -89.26596111973944
},
"type": "basic",
"width": 242.0
},
{
"data": {
"__execution_delay": 0.0,
"collapsed": null,
"display": null,
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
}
},
"other": {},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": [
{
"kind": "text",
"value": "Trains the selected model on the selected dataset. Most training parameters are set in the model definition."
}
],
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "Define model",
"outputs": [
{
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
],
"params": [
{
"default": null,
"name": "model_workspace",
"type": {
"type": "<class 'str'>"
}
},
{
"default": "model",
"name": "save_as",
"type": {
"type": "<class 'str'>"
}
}
],
"type": "basic"
},
"params": {
"model_workspace": "Cheminformatics/Model NN SAR",
"save_as": "model"
},
"status": "done",
"title": "Define model"
},
"dragHandle": ".bg-primary",
"height": 291.0,
"id": "Define model 2",
"position": {
"x": 124.25855086332746,
"y": -84.85029279063554
},
"type": "basic",
"width": 427.0
},
{
"data": {
"__execution_delay": 0.0,
"collapsed": false,
"display": null,
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Input__tensor_3_output",
"Output_1_x"
],
"outputs": [
"Output_1_x"
],
"trained": false
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": [
{
"kind": "text",
"value": "Trains the selected model on the selected dataset. Most training parameters are set in the model definition."
}
],
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "Train model",
"outputs": [
{
"name": "output",
"position": "right",
"type": {
"type": "None"
}
}
],
"params": [
{
"default": "model",
"name": "model_name",
"type": {
"type": "<class 'str'>"
}
},
{
"default": null,
"name": "input_mapping",
"type": {
"type": "<class 'lynxkite_graph_analytics.ml_ops.ModelTrainingInputMapping'>"
}
},
{
"default": 1,
"name": "epochs",
"type": {
"type": "<class 'int'>"
}
}
],
"type": "basic"
},
"params": {
"epochs": "300",
"input_mapping": "{\"map\":{\"Input__tensor_1_output\":{\"df\":\"df_train\",\"column\":\"x\"},\"Input__tensor_3_output\":{\"df\":\"df_train\",\"column\":\"y\"}}}",
"model_name": "model"
},
"status": "done",
"title": "Train model"
},
"dragHandle": ".bg-primary",
"height": 403.0,
"id": "Train model 1",
"position": {
"x": 883.4876070533219,
"y": -88.26891135978968
},
"type": "basic",
"width": 523.0
},
{
"data": {
"__execution_delay": null,
"collapsed": false,
"display": {
"dataframes": {
"df": {
"columns": [
"x",
"y"
],
"data": [
[
"[0 1 0 ... 0 0 0]",
5.99
],
[
"[0 1 0 ... 0 0 0]",
5.81
],
[
"[0 1 0 ... 0 0 0]",
7.29
],
[
"[0 1 0 ... 0 0 0]",
7.9
],
[
"[0 1 0 ... 0 0 0]",
8.31
],
[
"[0 1 0 ... 0 0 0]",
6.89
],
[
"[0 0 0 ... 0 0 0]",
8.14
],
[
"[0 1 0 ... 0 0 0]",
8.01
],
[
"[0 1 0 ... 0 0 0]",
6.24
],
[
"[0 1 0 ... 0 0 0]",
5.41
],
[
"[0 1 0 ... 0 0 0]",
6.46
],
[
"[0 1 0 ... 0 0 0]",
6.68
],
[
"[0 1 0 ... 0 0 0]",
7.42
],
[
"[0 1 0 ... 0 0 0]",
8.09
],
[
"[0 1 0 ... 0 0 0]",
7.28
],
[
"[0 1 0 ... 0 0 0]",
6.55
],
[
"[0 1 0 ... 0 0 0]",
5.47
],
[
"[0 0 0 ... 0 0 0]",
6.43
],
[
"[0 1 0 ... 0 0 0]",
8.59
],
[
"[0 0 0 ... 0 0 0]",
7.88
],
[
"[0 1 0 ... 0 0 0]",
6.49
],
[
"[0 1 0 ... 0 0 0]",
8.78
],
[
"[0 0 0 ... 0 0 0]",
7.44
],
[
"[0 0 0 ... 0 0 0]",
10.215
],
[
"[0 0 0 ... 0 0 0]",
5.88
],
[
"[0 0 0 ... 0 0 0]",
6.3
],
[
"[0 0 0 ... 0 0 0]",
9.49
],
[
"[0 1 0 ... 0 0 0]",
7.443
],
[
"[0 0 0 ... 0 1 0]",
9.96
],
[
"[0 0 0 ... 0 0 0]",
7.72
],
[
"[0 1 0 ... 0 0 0]",
6.27
],
[
"[0 1 0 ... 0 1 0]",
9.09
],
[
"[0 1 0 ... 0 0 0]",
8.49
],
[
"[0 1 0 ... 0 0 0]",
6.82
],
[
"[0 1 1 ... 0 0 0]",
7.01
],
[
"[0 1 0 ... 0 0 0]",
8.28
],
[
"[0 0 0 ... 0 0 0]",
5.47
],
[
"[0 1 0 ... 0 0 0]",
4.59
],
[
"[0 1 0 ... 0 0 0]",
7.38
],
[
"[0 0 0 ... 0 0 0]",
8.87
],
[
"[0 1 0 ... 0 0 0]",
7.45
],
[
"[0 1 0 ... 0 0 0]",
7.08
],
[
"[0 1 0 ... 0 0 0]",
6.91
],
[
"[0 1 0 ... 0 0 0]",
6.07
],
[
"[0 1 0 ... 0 0 0]",
8.37
],
[
"[0 1 0 ... 0 0 0]",
6.0
],
[
"[0 1 0 ... 0 0 0]",
5.75
],
[
"[0 1 0 ... 0 0 0]",
5.87
],
[
"[0 1 0 ... 0 0 0]",
7.11
],
[
"[0 1 0 ... 0 0 0]",
6.2
],
[
"[0 0 0 ... 0 0 0]",
9.85
],
[
"[0 0 0 ... 0 0 0]",
8.05
],
[
"[0 0 0 ... 0 0 0]",
8.89
],
[
"[0 1 0 ... 0 0 0]",
8.02
],
[
"[0 0 0 ... 0 0 0]",
8.6
],
[
"[0 0 0 ... 0 0 0]",
9.49
],
[
"[0 1 0 ... 0 0 0]",
7.66
],
[
"[0 1 0 ... 0 0 0]",
8.77
],
[
"[0 0 0 ... 0 0 0]",
9.09
],
[
"[0 1 0 ... 0 0 0]",
7.31
],
[
"[0 0 0 ... 0 0 0]",
8.19
],
[
"[0 0 0 ... 0 0 0]",
9.46
],
[
"[0 1 0 ... 0 0 0]",
6.88
],
[
"[0 1 0 ... 0 0 0]",
6.86
],
[
"[0 0 0 ... 0 0 0]",
7.39
],
[
"[0 0 0 ... 0 0 0]",
7.8
],
[
"[0 0 0 ... 0 0 0]",
9.21
],
[
"[0 1 0 ... 0 0 0]",
7.29
],
[
"[0 1 0 ... 0 0 0]",
7.71
],
[
"[0 0 0 ... 0 0 0]",
8.97
],
[
"[0 0 0 ... 0 0 0]",
9.24
],
[
"[0 1 0 ... 0 0 0]",
8.73
],
[
"[0 0 0 ... 0 0 0]",
8.14
],
[
"[0 0 0 ... 0 0 0]",
9.89
],
[
"[0 0 0 ... 0 0 0]",
8.61
],
[
"[0 1 0 ... 0 0 0]",
8.4
],
[
"[0 1 0 ... 0 0 0]",
8.34
],
[
"[0 1 0 ... 0 0 0]",
7.19
],
[
"[0 1 0 ... 0 0 0]",
10.77
],
[
"[0 0 0 ... 0 0 0]",
9.96
],
[
"[0 1 0 ... 0 0 0]",
9.82
],
[
"[0 0 0 ... 0 0 0]",
9.64
],
[
"[0 1 0 ... 0 0 0]",
9.42
],
[
"[0 1 0 ... 0 0 0]",
9.19
],
[
"[0 0 0 ... 0 0 0]",
7.62
],
[
"[0 0 0 ... 0 0 0]",
7.77
],
[
"[0 0 0 ... 0 0 0]",
7.57
],
[
"[0 0 0 ... 0 0 0]",
7.26
],
[
"[0 0 0 ... 0 0 0]",
7.86
],
[
"[0 1 0 ... 0 0 0]",
8.54
],
[
"[0 0 0 ... 0 0 0]",
9.52
],
[
"[0 1 0 ... 0 0 0]",
8.29
],
[
"[0 0 0 ... 0 0 0]",
9.62
],
[
"[0 0 0 ... 0 0 0]",
9.74
],
[
"[0 0 0 ... 0 0 0]",
7.74
],
[
"[0 1 0 ... 0 0 0]",
7.41
],
[
"[0 1 0 ... 0 0 0]",
7.51
],
[
"[0 0 0 ... 0 0 0]",
9.02
],
[
"[0 0 0 ... 0 0 0]",
9.82
],
[
"[0 1 0 ... 0 0 0]",
9.46
]
]
},
"df_test": {
"columns": [
"index",
"x",
"y",
"pred"
],
"data": [
[
40,
"[0 1 0 ... 0 0 0]",
7.45,
"[8.104705810546875]"
],
[
72,
"[0 0 0 ... 0 0 0]",
8.14,
"[8.201379776000977]"
],
[
88,
"[0 0 0 ... 0 0 0]",
7.86,
"[8.041634559631348]"
],
[
47,
"[0 1 0 ... 0 0 0]",
5.87,
"[7.67177152633667]"
],
[
86,
"[0 0 0 ... 0 0 0]",
7.57,
"[8.264192581176758]"
],
[
17,
"[0 0 0 ... 0 0 0]",
6.43,
"[7.978921890258789]"
],
[
80,
"[0 1 0 ... 0 0 0]",
9.82,
"[8.022457122802734]"
],
[
49,
"[0 1 0 ... 0 0 0]",
6.2,
"[8.332632064819336]"
],
[
36,
"[0 0 0 ... 0 0 0]",
5.47,
"[8.089141845703125]"
],
[
65,
"[0 0 0 ... 0 0 0]",
7.8,
"[8.2095365524292]"
],
[
1,
"[0 1 0 ... 0 0 0]",
5.81,
"[7.749063491821289]"
],
[
10,
"[0 1 0 ... 0 0 0]",
6.46,
"[7.5141472816467285]"
],
[
21,
"[0 1 0 ... 0 0 0]",
8.78,
"[8.20059585571289]"
],
[
69,
"[0 0 0 ... 0 0 0]",
8.97,
"[8.091978073120117]"
],
[
24,
"[0 0 0 ... 0 0 0]",
5.88,
"[8.08375358581543]"
],
[
59,
"[0 1 0 ... 0 0 0]",
7.31,
"[8.203842163085938]"
],
[
95,
"[0 1 0 ... 0 0 0]",
7.41,
"[8.150091171264648]"
],
[
11,
"[0 1 0 ... 0 0 0]",
6.68,
"[7.686234951019287]"
],
[
29,
"[0 0 0 ... 0 0 0]",
7.72,
"[7.770969390869141]"
],
[
38,
"[0 1 0 ... 0 0 0]",
7.38,
"[8.099600791931152]"
],
[
22,
"[0 0 0 ... 0 0 0]",
7.44,
"[8.196172714233398]"
],
[
44,
"[0 1 0 ... 0 0 0]",
8.37,
"[8.272903442382812]"
]
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
],
"data": [
[
22,
"[0 0 0 ... 0 0 0]",
7.44
],
[
23,
"[0 0 0 ... 0 0 0]",
10.215
],
[
24,
"[0 0 0 ... 0 0 0]",
5.88
],
[
25,
"[0 0 0 ... 0 0 0]",
6.3
],
[
26,
"[0 0 0 ... 0 0 0]",
9.49
],
[
27,
"[0 1 0 ... 0 0 0]",
7.443
],
[
28,
"[0 0 0 ... 0 1 0]",
9.96
],
[
29,
"[0 0 0 ... 0 0 0]",
7.72
],
[
30,
"[0 1 0 ... 0 0 0]",
6.27
],
[
31,
"[0 1 0 ... 0 1 0]",
9.09
],
[
32,
"[0 1 0 ... 0 0 0]",
8.49
],
[
33,
"[0 1 0 ... 0 0 0]",
6.82
],
[
34,
"[0 1 1 ... 0 0 0]",
7.01
],
[
35,
"[0 1 0 ... 0 0 0]",
8.28
],
[
36,
"[0 0 0 ... 0 0 0]",
5.47
],
[
37,
"[0 1 0 ... 0 0 0]",
4.59
],
[
38,
"[0 1 0 ... 0 0 0]",
7.38
],
[
39,
"[0 0 0 ... 0 0 0]",
8.87
],
[
40,
"[0 1 0 ... 0 0 0]",
7.45
],
[
41,
"[0 1 0 ... 0 0 0]",
7.08
],
[
42,
"[0 1 0 ... 0 0 0]",
6.91
],
[
43,
"[0 1 0 ... 0 0 0]",
6.07
],
[
44,
"[0 1 0 ... 0 0 0]",
8.37
],
[
45,
"[0 1 0 ... 0 0 0]",
6.0
],
[
46,
"[0 1 0 ... 0 0 0]",
5.75
],
[
47,
"[0 1 0 ... 0 0 0]",
5.87
],
[
48,
"[0 1 0 ... 0 0 0]",
7.11
],
[
49,
"[0 1 0 ... 0 0 0]",
6.2
],
[
50,
"[0 0 0 ... 0 0 0]",
9.85
],
[
51,
"[0 0 0 ... 0 0 0]",
8.05
],
[
52,
"[0 0 0 ... 0 0 0]",
8.89
],
[
53,
"[0 1 0 ... 0 0 0]",
8.02
],
[
54,
"[0 0 0 ... 0 0 0]",
8.6
],
[
55,
"[0 0 0 ... 0 0 0]",
9.49
],
[
56,
"[0 1 0 ... 0 0 0]",
7.66
],
[
57,
"[0 1 0 ... 0 0 0]",
8.77
],
[
58,
"[0 0 0 ... 0 0 0]",
9.09
],
[
59,
"[0 1 0 ... 0 0 0]",
7.31
],
[
60,
"[0 0 0 ... 0 0 0]",
8.19
],
[
61,
"[0 0 0 ... 0 0 0]",
9.46
],
[
62,
"[0 1 0 ... 0 0 0]",
6.88
],
[
63,
"[0 1 0 ... 0 0 0]",
6.86
],
[
64,
"[0 0 0 ... 0 0 0]",
7.39
],
[
65,
"[0 0 0 ... 0 0 0]",
7.8
],
[
66,
"[0 0 0 ... 0 0 0]",
9.21
],
[
67,
"[0 1 0 ... 0 0 0]",
7.29
],
[
68,
"[0 1 0 ... 0 0 0]",
7.71
],
[
69,
"[0 0 0 ... 0 0 0]",
8.97
],
[
70,
"[0 0 0 ... 0 0 0]",
9.24
],
[
71,
"[0 1 0 ... 0 0 0]",
8.73
],
[
72,
"[0 0 0 ... 0 0 0]",
8.14
],
[
73,
"[0 0 0 ... 0 0 0]",
9.89
],
[
74,
"[0 0 0 ... 0 0 0]",
8.61
],
[
75,
"[0 1 0 ... 0 0 0]",
8.4
],
[
76,
"[0 1 0 ... 0 0 0]",
8.34
],
[
77,
"[0 1 0 ... 0 0 0]",
7.19
],
[
78,
"[0 1 0 ... 0 0 0]",
10.77
],
[
79,
"[0 0 0 ... 0 0 0]",
9.96
],
[
80,
"[0 1 0 ... 0 0 0]",
9.82
],
[
81,
"[0 0 0 ... 0 0 0]",
9.64
],
[
82,
"[0 1 0 ... 0 0 0]",
9.42
],
[
83,
"[0 1 0 ... 0 0 0]",
9.19
],
[
84,
"[0 0 0 ... 0 0 0]",
7.62
],
[
85,
"[0 0 0 ... 0 0 0]",
7.77
],
[
86,
"[0 0 0 ... 0 0 0]",
7.57
],
[
87,
"[0 0 0 ... 0 0 0]",
7.26
],
[
88,
"[0 0 0 ... 0 0 0]",
7.86
],
[
89,
"[0 1 0 ... 0 0 0]",
8.54
],
[
90,
"[0 0 0 ... 0 0 0]",
9.52
],
[
91,
"[0 1 0 ... 0 0 0]",
8.29
],
[
92,
"[0 0 0 ... 0 0 0]",
9.62
],
[
93,
"[0 0 0 ... 0 0 0]",
9.74
],
[
94,
"[0 0 0 ... 0 0 0]",
7.74
],
[
95,
"[0 1 0 ... 0 0 0]",
7.41
],
[
96,
"[0 1 0 ... 0 0 0]",
7.51
],
[
97,
"[0 0 0 ... 0 0 0]",
9.02
],
[
98,
"[0 0 0 ... 0 0 0]",
9.82
],
[
99,
"[0 1 0 ... 0 0 0]",
9.46
],
[
100,
"[0 1 0 ... 0 0 0]",
8.95
],
[
101,
"[0 1 0 ... 0 0 0]",
8.78
],
[
102,
"[0 1 0 ... 0 0 0]",
8.45
],
[
103,
"[0 0 0 ... 0 0 0]",
8.29
],
[
104,
"[0 1 0 ... 0 0 0]",
7.95
],
[
105,
"[0 1 0 ... 0 0 0]",
7.48
],
[
106,
"[0 1 0 ... 0 0 0]",
6.79
],
[
107,
"[0 1 0 ... 0 0 0]",
8.39
]
]
},
"training": {
"columns": [
"training_loss"
],
"data": [
[
67.413818359375
],
[
67.11187744140625
],
[
66.81317901611328
],
[
66.5162353515625
],
[
66.21949768066406
],
[
65.92274475097656
],
[
65.62549591064453
],
[
65.32546997070312
],
[
65.02108764648438
],
[
64.71121978759766
],
[
64.39421081542969
],
[
64.06808471679688
],
[
63.73294448852539
],
[
63.3873405456543
],
[
63.02961730957031
],
[
62.65884017944336
],
[
62.27304458618164
],
[
61.87138366699219
],
[
61.452850341796875
],
[
61.01667404174805
],
[
60.56078338623047
],
[
60.08305740356445
],
[
59.582435607910156
],
[
59.05806350708008
],
[
58.50962829589844
],
[
57.935184478759766
],
[
57.33393096923828
],
[
56.705013275146484
],
[
56.0476188659668
],
[
55.360347747802734
],
[
54.6429443359375
],
[
53.89464569091797
],
[
53.113922119140625
],
[
52.30055618286133
],
[
51.4543571472168
],
[
50.57438278198242
],
[
49.660362243652344
],
[
48.712093353271484
],
[
47.72883224487305
],
[
46.7108039855957
],
[
45.65839767456055
],
[
44.572303771972656
],
[
43.45291519165039
],
[
42.30076217651367
],
[
41.11710739135742
],
[
39.90336990356445
],
[
38.66173553466797
],
[
37.39354705810547
],
[
36.100341796875
],
[
34.78422546386719
],
[
33.44749450683594
],
[
32.092674255371094
],
[
30.722511291503906
],
[
29.340362548828125
],
[
27.94980239868164
],
[
26.553958892822266
],
[
25.156696319580078
],
[
23.762224197387695
],
[
22.374366760253906
],
[
20.997533798217773
],
[
19.63677978515625
],
[
18.296897888183594
],
[
16.982328414916992
],
[
15.697725296020508
],
[
14.44817066192627
],
[
13.238905906677246
],
[
12.074806213378906
],
[
10.960868835449219
],
[
9.901790618896484
],
[
8.901801109313965
],
[
7.964723110198975
],
[
7.09385347366333
],
[
6.291915416717529
],
[
5.561134338378906
],
[
4.903149127960205
],
[
4.318702220916748
],
[
3.808044672012329
],
[
3.370572566986084
],
[
3.004401922225952
],
[
2.706446886062622
],
[
2.472712278366089
],
[
2.2981722354888916
],
[
2.176875591278076
],
[
2.102105140686035
],
[
2.066572666168213
],
[
2.0626060962677
],
[
2.082454204559326
],
[
2.1185786724090576
],
[
2.163982629776001
],
[
2.212440252304077
],
[
2.2587029933929443
],
[
2.298664093017578
],
[
2.3294262886047363
],
[
2.349210023880005
],
[
2.3572983741760254
],
[
2.353860855102539
],
[
2.339801073074341
],
[
2.3165128231048584
],
[
2.285783290863037
],
[
2.2495362758636475
]
]
}
},
"other": {
"model": "ModelConfig(model=Sequential(\n (0) - Linear(1024, 512, bias=True): Input__tensor_1_output -> Linear_1_output\n (1) - <function relu at 0x7f2e936854e0>: Linear_1_output -> Activation_1_output\n (2) - Linear(512, 256, bias=True): Activation_1_output -> Linear_2_output\n (3) - <function relu at 0x7f2e936854e0>: Linear_2_output -> Activation_2_output\n (4) - Linear(256, 1, bias=True): Activation_2_output -> Linear_3_output\n (5) - Identity(): Linear_3_output -> Output_1_x\n (6) - Identity(): Output_1_x -> Output_1_x\n), model_inputs=['Input__tensor_1_output'], model_outputs=['Output_1_x'], loss_inputs=['Input__tensor_3_output', 'Output_1_x'], loss=Sequential(\n (0) - <function mse_loss at 0x7f2e93687420>: Output_1_x, Input__tensor_3_output -> MSE_loss_2_output\n (1) - Identity(): MSE_loss_2_output -> loss\n), optimizer_parameters={'lr': 0.0001, 'type': <OptionsFor_type.AdamW: 1>}, optimizer=AdamW (\nParameter Group 0\n amsgrad: False\n betas: (0.9, 0.999)\n capturable: False\n decoupled_weight_decay: True\n differentiable: False\n eps: 1e-08\n foreach: None\n fused: None\n lr: 0.0001\n maximize: False\n weight_decay: 0.01\n), source_workspace='Cheminformatics/Model NN SAR', trained=True)"
},
"relations": []
},
"error": null,
"input_metadata": [
{
"dataframes": {
"df": {
"columns": [
"x",
"y"
]
},
"df_test": {
"columns": [
"index",
"pred",
"x",
"y"
]
},
"df_train": {
"columns": [
"index",
"x",
"y"
]
},
"training": {
"columns": [
"training_loss"
]
}
},
"other": {
"model": {
"model": {
"inputs": [
"Input__tensor_1_output"
],
"loss_inputs": [
"Input__tensor_3_output",
"Output_1_x"
],
"outputs": [
"Output_1_x"
],
"trained": true
},
"type": "model"
}
},
"relations": []
}
],
"meta": {
"color": "orange",
"doc": null,
"inputs": [
{
"name": "bundle",
"position": "left",
"type": {
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
}
}
],
"name": "View tables",
"outputs": [],
"params": [
{
"default": 100,
"name": "limit",
"type": {
"type": "<class 'int'>"
}
}
],
"type": "table_view"
},
"params": {
"_tables_open": {
"df_test": true,
"df_train": false
},
"limit": 100.0
},
"status": "done",
"title": "View tables"
},
"dragHandle": ".bg-primary",
"height": 523.0,
"id": "View tables 1",
"position": {
"x": 2614.6287203681786,
"y": -389.3147778373818
},
"type": "table_view",
"width": 940.0
}
]
}