Spaces:
Sleeping
Sleeping
| from typing import Union, Tuple | |
| import torch | |
| from einops import rearrange | |
| from torch import Tensor | |
| # Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py | |
| # Ref: https://github.com/lucidrains/rotary-embedding-torch | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| def compute_rope_rotations(length: int, | |
| dim: int, | |
| theta: int, | |
| *, | |
| freq_scaling: float = 1.0, | |
| device: Union[torch.device, str] = 'cpu') -> Tensor: | |
| assert dim % 2 == 0 | |
| with torch.amp.autocast(device_type=DEVICE, enabled=False): | |
| pos = torch.arange(length, dtype=torch.float32, device=device) | |
| freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) | |
| freqs *= freq_scaling | |
| rot = torch.einsum('..., f -> ... f', pos, freqs) | |
| rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1) | |
| rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2) | |
| return rot | |
| def apply_rope(x: Tensor, rot: Tensor) -> Tuple[Tensor, Tensor]: | |
| with torch.amp.autocast(device_type=DEVICE, enabled=False): | |
| _x = x.float() | |
| _x = _x.view(*_x.shape[:-1], -1, 1, 2) | |
| x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1] | |
| return x_out.reshape(*x.shape).to(dtype=x.dtype) | |