Spaces:
Running
Running
import os | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from sklearn.metrics.pairwise import paired_cosine_distances | |
from sklearn.preprocessing import normalize | |
from rolaser import RoLaserEncoder | |
laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt" | |
laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab" | |
laser_tokenizer = 'spm' | |
laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer) | |
rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt" | |
rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab" | |
rolaser_tokenizer = 'roberta' | |
rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer) | |
c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt" | |
c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab" | |
c_rolaser_tokenizer = 'char' | |
c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer) | |
STD_SENTENCES = ['See you tomorrow.'] * 10 | |
UGC_SENTENCES = [ | |
'See you t03orro3.', | |
'C. U. tomorrow.', | |
'sea you tomorrow.', | |
'See yo utomorrow.', | |
'See you tmrw.', | |
'See you tkmoerow.', | |
'Cu 2moro.', | |
'See yow tomorrow.', | |
'C. Yew tomorrow.', | |
'c ya 2morrow.' | |
] | |
def add_text_inputs(i): | |
col1, col2 = st.columns(2) | |
with col1: | |
text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i]) | |
with col2: | |
text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i]) | |
return text_input1, text_input2 | |
def main(): | |
st.title('Pairwise Cosine Distance Calculator') | |
info = ''' | |
:bookmark: **Paper:** [Making Sentence Embeddings Robust to User-Generated Content (Nishimwe et al., 2024)](https://arxiv.org/abs/2403.17220) | |
:link: **Github:** [https://github.com/lydianish/RoLASER](https://github.com/lydianish/RoLASER) | |
This demo app computes text embeddings of sentence pairs using the LASER encoder and its robust students RoLASER and c-RoLASER. | |
The pairwise cosine distances between the sentences are then computed and displayed. | |
''' | |
st.markdown(info) | |
st.header('Standard and Non-standard Text Input Pairs:') | |
num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5) | |
std_text_inputs = [] | |
ugc_text_inputs = [] | |
for i in range(num_pairs): | |
pair = add_text_inputs(i) | |
std_text_inputs.append(pair[0]) | |
ugc_text_inputs.append(pair[1]) | |
if st.button('Submit'): | |
X_std_laser = normalize(laser_model.encode(std_text_inputs)) | |
X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs)) | |
X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser) | |
X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs)) | |
X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs)) | |
X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser) | |
X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs)) | |
X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs)) | |
X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser) | |
outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos']) | |
outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs) | |
outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3) | |
outputs['std'] = np.tile(std_text_inputs, 3) | |
outputs['ugc'] = np.tile(ugc_text_inputs, 3) | |
outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser]) | |
st.header('Cosine Distance Scores:') | |
st.caption('*This bar plot is interactive: Hover on the bars to display values. Click on the legend to filter models.*') | |
fig = px.bar(outputs, x='pair', y='cos', color='model', barmode='group', hover_data=['ugc', 'std']) | |
fig.update_xaxes(title_text='Text Input Pair') | |
fig.update_yaxes(title_text='Cosine Distance') | |
st.plotly_chart(fig, use_container_width=True) | |
st.header('Average Cosine Distance Scores:') | |
st.caption('*This data table is interactive: Click on a column header to sort values.*') | |
st.write(outputs.groupby('model')['cos'].describe()) | |
if __name__ == "__main__": | |
main() | |