rolaser-demo / app.py
lydianish's picture
Update app.py
723d6ec verified
raw
history blame
4.48 kB
import os
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.metrics.pairwise import paired_cosine_distances
from sklearn.preprocessing import normalize
from rolaser import RoLaserEncoder
laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt"
laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab"
laser_tokenizer = 'spm'
laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer)
rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt"
rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab"
rolaser_tokenizer = 'roberta'
rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer)
c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt"
c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab"
c_rolaser_tokenizer = 'char'
c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer)
STD_SENTENCES = ['See you tomorrow.'] * 10
UGC_SENTENCES = [
'See you t03orro3.',
'C. U. tomorrow.',
'sea you tomorrow.',
'See yo utomorrow.',
'See you tmrw.',
'See you tkmoerow.',
'Cu 2moro.',
'See yow tomorrow.',
'C. Yew tomorrow.',
'c ya 2morrow.'
]
def add_text_inputs(i):
col1, col2 = st.columns(2)
with col1:
text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i])
with col2:
text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i])
return text_input1, text_input2
def main():
st.title('Pairwise Cosine Distance Calculator')
info = '''
:bookmark: **Paper:** [Making Sentence Embeddings Robust to User-Generated Content (Nishimwe et al., 2024)](https://arxiv.org/abs/2403.17220)
:link: **Github:** [https://github.com/lydianish/RoLASER](https://github.com/lydianish/RoLASER)
This demo app computes text embeddings of sentence pairs using the LASER encoder and its robust students RoLASER and c-RoLASER.
The pairwise cosine distances between the sentences are then computed and displayed.
'''
st.markdown(info)
st.header('Standard and Non-standard Text Input Pairs:')
num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5)
std_text_inputs = []
ugc_text_inputs = []
for i in range(num_pairs):
pair = add_text_inputs(i)
std_text_inputs.append(pair[0])
ugc_text_inputs.append(pair[1])
if st.button('Submit'):
X_std_laser = normalize(laser_model.encode(std_text_inputs))
X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs))
X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser)
X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs))
X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs))
X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser)
X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs))
X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs))
X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser)
outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos'])
outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs)
outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3)
outputs['std'] = np.tile(std_text_inputs, 3)
outputs['ugc'] = np.tile(ugc_text_inputs, 3)
outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser])
st.header('Cosine Distance Scores:')
st.caption('*This bar plot is interactive: Hover on the bars to display values. Click on the legend to filter models.*')
fig = px.bar(outputs, x='pair', y='cos', color='model', barmode='group', hover_data=['ugc', 'std'])
fig.update_xaxes(title_text='Text Input Pair')
fig.update_yaxes(title_text='Cosine Distance')
st.plotly_chart(fig, use_container_width=True)
st.header('Average Cosine Distance Scores:')
st.caption('*This data table is interactive: Click on a column header to sort values.*')
st.write(outputs.groupby('model')['cos'].describe())
if __name__ == "__main__":
main()